Взаимосвязь между напряженностью и напряжением

Электрическое поле

Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.

Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.

Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.

Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​ \( q \) ​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10 -19 Кл), наименьший положительный заряд (1,6·10 -19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​ \( N \) ​ — число избыточных или недостающих электронов;
​ \( e \) ​ — элементарный заряд, равный 1,6·10 -19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует.

Электрические заряды взаимодействуют:

  • заряды одного знака отталкиваются:

  • заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Закон сохранения электрического заряда

Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.

В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.

Полный электрический заряд ​ \( (q) \) ​ системы равен алгебраической сумме ее положительных и отрицательных зарядов ​ \( (q_1, q_2 … q_N) \) ​:

Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​ \( F \) ​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​ \( q_1 \) ​ и \( q_2 \) и обратно пропорциональна квадрату расстояния между ними ​ \( r \) ​:

где ​ \( k=\frac<4\pi\varepsilon_0>=9\cdot10^9 \) ​ (Н·м 2 )/Кл 2 – коэффициент пропорциональности,
​ \( \varepsilon_0=8.85\cdot10^ \) ​ Кл 2 /(Н·м 2 ) – электрическая постоянная.

Коэффициент ​ \( k \) ​ численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.

Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:

где ​ \( \varepsilon \) ​ – диэлектрическая проницаемость среды.

Закон Кулона применим к взаимодействию

  • неподвижных точечных зарядов;
  • равномерно заряженных тел сферической формы.

В этом случае ​ \( r \) ​ – расстояние между центрами сферических поверхностей.

Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции).

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

где ​ \( \vec \) ​ – напряженность электрического поля, ​ \( q \) ​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Напряженность электрического поля

Напряженность электрического поля ​ \( \vec \) ​ – векторная физическая величина, равная отношению силы ​ \( F \) ​, действующей на пробный точечный заряд, к величине этого заряда ​ \( q \) ​:

Обозначение – \( \vec \) , единица измерения в СИ – Н/Кл или В/м.

Напряженность поля точечного заряда в вакууме вычисляется по формуле:

где \( k=\frac<4\pi\varepsilon_0>=9\cdot10^9 \) (Н·м 2 )/Кл 2 ,
​ \( q_0 \) ​ – заряд, создающий поле,
​ \( r \) ​ – расстояние от заряда, создающего поле, до данной точки.

Напряженность поля точечного заряда в среде вычисляется по формуле:

где ​ \( \varepsilon \) ​ – диэлектрическая проницаемость среды.

Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле.

Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.

Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности ​ \( \vec \) ​.

Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.

Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.

Определяя направление вектора ​ \( \vec \) ​ в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.

Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.

Принцип суперпозиции электрических полей

Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.

Принцип суперпозиции электрических полей: напряженность электрического поля системы ​ \( N \) ​ зарядов равна векторной сумме напряженностей полей, создаваемых каждым из них в отдельности:

Электрические поля от разных источников существуют в одной точке пространства и действуют на заряд независимо друг от друга.

Потенциальность электростатического поля

Электрическое поле с напряженностью ​ \( \vec \) ​ при перемещении заряда ​ \( q \) ​ совершает работу. Работа ​ \( A \) ​ электростатического поля вычисляется по формуле:

где ​ \( d \) ​ – расстояние, на которое перемещается заряд,
​ \( \alpha \) ​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле.

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным.

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​ \( W \) ​, так как буквой ​ \( E \) ​ обозначают напряженность поля:

Потенциальная энергия заряда ​ \( q \) ​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​ \( \varphi \) ​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​ \( \Delta\varphi \) ​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​ \( U \) ​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \) , а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \) . Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле.

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​ \( q \) ​ в точке, удаленной от него на расстояние ​ \( r \) ​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​ \( r =R \) ​, где ​ \( R \) ​ – радиус шара). Напряженность поля внутри шара равна нулю.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Проводники в электрическом поле

Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.

Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.

Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.

Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.

Важно!
Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.

Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.

Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.

Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​ \( C \) ​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Формула для вычисления электроемкости:

где ​ \( q \) ​ – заряд проводника, ​ \( \varphi \) ​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

где ​ \( q \) ​ – модуль заряда одной из обкладок,
​ \( U \) ​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​ \( S \) ​, находящиеся на расстоянии ​ \( d \) ​ друг от друга.

Электроемкость плоского конденсатора:

где ​ \( \varepsilon \) ​ – диэлектрическая проницаемость вещества между обкладками,
\( \varepsilon_0 \) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Величина, обратная общей емкости:

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.

Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Энергия электрического поля конденсатора

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрическая энергия конденсатора сосредоточена в пространстве между обкладками конденсатора, то есть в электрическом поле, поэтому ее называют энергией электрического поля. Формулы для вычисления энергии электрического поля:

Так как напряженность электрического поля прямо пропорциональна напряжению, то энергия электрического поля конденсатора пропорциональна квадрату напряженности.

Плотность энергии электрического поля:

где ​ \( V \) ​ – объем пространства между обкладками конденсатора.

Плотность энергии не зависит от параметров конденсатора, а определяется только напряженностью электрического поля.

Электростатика — основные понятия, формулы и определения с примерами

По современным представлениям основой всего многообразия явлений природы являются четыре фундаментальных взаимодействия между частицами микромира (электрон, протон и др.) — сильное, слабое, электромагнитное и гравитационное. Каждый вид взаимодействия связан с определённой характеристикой частицы. Например, гравитационное взаимодействие зависит от масс частиц, электромагнитное — от электрических зарядов.

Электромагнитное взаимодействие лежит в основе всех электрических, магнитных и оптических явлений. Этим же взаимодействием обусловлены силы упругости и силы трения, известные вам из механики. Взаимодействие атомов и молекул, которое мы рассматривали при изучении молекулярно-кинетической теории, также является электромагнитным. Электромагнитное взаимодействие определяет свойства веществ в различных агрегатных состояниях и их химические превращения. Поскольку молекулярные силы имеют электромагнитную природу, то практически все биологические явления обусловлены электромагнетизмом.

Электродинамика — раздел физики, в котором изучают закономерности физических явлений, обусловленных электрическими и магнитными взаимодействиями, материальным носителем которых является электромагнитное поле. Термин «электродинамика» ввёл в физику французский учёный Андре Мари Ампер (1775—1836) в 1822 г.

При изучении электродинамики вы познакомитесь с законами взаимодействия тел (частиц), обладающих электрическим зарядом, особенностями упорядоченного движения заряженных частиц, физическими величинами, характеризующими электрические и магнитные явления.

В 10 классе вам предстоит изучить следующие разделы электродинамики: электростатика, постоянный электрический ток, ток в различных средах и электромагнитные явления.

Электростатика — раздел электродинамики, в котором изучают свойства, взаимодействие и условия равновесия неподвижных в некоторой инерциальной системе отсчёта электрически заряженных тел, распределение заряда на которых не изменяется со временем, а также электростатические поля, создаваемые зарядами таких тел. Термин «электростатика» введён Ампером в 1822 г. Фундамент электростатики составляют экспериментальные научные факты, отражающие поведение заряженных тел при их электрическом взаимодействии. Ядро электростатики составляют закон сохранения электрического заряда, опытным путём установленный в 1759 г. петербургским академиком Францем Эпинусом (1724—1802), и закон взаимодействия покоящихся точечных зарядов, экспериментально открытый в 1785 г. французским учёным Шарлем Кулоном (1736—1806).

Электростатика

На уроках физики в 8 классе при проведении опытов вы наблюдали притяжение крошек пенопласта, небольших кусочков бумаги (рис. 76), лёгкой станиолевой гильзы (рис. 77) к потёртой о сухую бумагу пластмассовой линейке или стеклянной палочке. Во всех перечисленных случаях имело место явление электризации тел. Оно заключается в возникновении противоположных по знаку электрических зарядов, модули которых равны, на первоначально электрически нейтральных телах. А что означает, что тело или частица обладает электрическим зарядом? Как взаимодействуют электрически заряженные тела?

Электрический заряд

Электрический заряд частицы является источником электромагнитного поля, связанного с материальным носителем. Электрический заряд, или количество электричества (обозначают буквой q или Q), — физическая скалярная величина, характеризующая интенсивность электромагнитного взаимодействия тел (частиц). Электрическому заряду присущи следующие фундаментальные свойства:

  1. электрический заряд существует в двух видах, которые названы положительным и отрицательным зарядом (существование двух видов заряда установил Шарль Дюфэ (1698—1739) в 1733 г., а в 1747 г. Бенджамин Франклин (1706—1790) приписал им знаки « + » и « —»);
  2. в любой электрически изолированной системе алгебраическая сумма зарядов тел (частиц) не изменяется;
  3. значение электрического заряда тела (частицы) не зависит от выбора системы отсчёта, а значит, не зависит от того, движется оно (она) или покоится;
  4. электрический заряд тела (частицы) не зависит ни от его (её) механического состояния, ни от каких-либо действующих на него (неё) сил.

Носителем заряда может быть как элементарная частица, так и макроскопическое тело.

Электростатика - основные понятия, формулы и определения с примерами

В одном моле вещества

Как вы знаете, электрическое взаимодействие проявляется в том, что одноимённо заряженные тела (частицы) отталкивают друг друга (рис. 78, а), а разноимённо заряженные — притягивают друг друга (рис. 78, б). Если в электрически нейтральном теле заряды распределены неравномерно и вследствие этого возникли противоположно заряженные части, то такие тела тоже электрически взаимодействуют (см. рис. 76 и 77).

Электростатика - основные понятия, формулы и определения с примерами

Заряды разных тел (частиц) могут отличаться не только знаком, но и числовым значением.

За единицу электрического заряда в СИ принят кулон (Кл). Эта единица названа в честь Ш. Кулона. 1 Кл — электрический заряд, проходящий через поперечное сечение проводника за промежуток времени 1 с при силе постоянного тока 1 А.

Один кулон — очень большая единица заряда. Расчёты показывают, что диаметр удалённого от всех остальных тел металлического шара, находящегося в сухом воздухе, должен быть равен примерно 110 м, чтобы на нём мог находиться избыточный заряд 1 Кл. Вместе с тем при включении автомобильных фар сила тока в цепи приблизительно 10 А, т. е. ежесекундно через поперечное сечение проводников, подсоединённых к фарам, проходит заряд приблизительно 10 Кл.

На рубеже XIX и XX столетий учёные экспериментально установили, что в природе существует электрический заряд, модуль которого минимален, называемый элементарным. Ядра всех атомов содержат протоны, которые являются носителями положительного элементарного заряда, а сами атомы содержат электроны, являющиеся носителями отрицательного элементарного заряда. Равенство модулей зарядов электрона и протона установлено с точностью Электростатика - основные понятия, формулы и определения с примерамиМодуль элементарного электрического заряда Электростатика - основные понятия, формулы и определения с примерамиКл. Обычно ограничиваются двумя значащими цифрами: Электростатика - основные понятия, формулы и определения с примерамиКл.

Электроны, протоны и нейтроны входят в состав всех тел, так как из них состоят атомы и молекулы любого вещества. В электрически нейтральном теле алгебраическая сумма зарядов всех частиц равна нулю. Если каким-нибудь образом создать в таком теле избыток зарядов одного знака, то оно окажется заряженным. Заряд q тела образуется совокупностью элементарных зарядов и всегда кратен элементарному заряду е (электрический заряд дискретен):

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

где— числа протонов и электронов в данном теле.

Например, тело, заряд которого q = 7e, отличается от нейтрального тела потерей семи электронов.

Закон сохранения электрического заряда

Модули противоположных по знаку зарядов, возникших в результате электризации на находившихся в контакте телах, равны. В этом можно убедиться на опыте. Возьмём эбонитовую палочку и кусочек меха. При трении друг о друга тела электризуются. Поместим поочерёдно внутрь металлической сферы, укреплённой на стержне электрометра, эбонитовую палочку (рис. 79, а) и кусочек меха (рис. 79, б). Стрелка электрометра отклонится, причём как в первом, так и во втором случаях на один и тот же угол. Если одновременно опустить внутрь сферы эбонитовую палочку и кусочек меха (рис. 79, в), то стрелка электрометра останется на месте. Следовательно, модули зарядов обоих тел равны, а их знаки противоположны.

Электростатика - основные понятия, формулы и определения с примерами

Результаты многочисленных экспериментов позволили сформулировать утверждение, которое является фундаментальным законом природы — законом сохранения электрического заряда: в электрически изолированной системе при любых взаимодействиях алгебраическая сумма электрических зарядов остаётся постоянной:

Электростатика - основные понятия, формулы и определения с примерами

где n — число зарядов в системе. Систему тел (частиц) называют электрически изолированной, если между ней и внешними телами нет обмена электрически заряженными частицами.

  1. Электрический заряд — физическая скалярная величина, характеризующая интенсивность электромагнитного взаимодействия тел (частиц). Электрический заряд существует в двух видах: положительный и отрицательный. Одноимённые заряды отталкиваются, а разноимённые — притягиваются.
  2. Существует заряд, модуль которого минимален, называемый элементарным:Электростатика - основные понятия, формулы и определения с примерами
  3. Электрический заряд дискретен, т. е. электрический заряд любой частицы или тела является кратным элементарному электрическому заряду.
  4. Закон сохранения электрического заряда: в электрически изолированной системе при любых взаимодействиях алгебраическая сумма электрических зарядов остаётся постоянной:Электростатика - основные понятия, формулы и определения с примерами
  5. Значение электрического заряда не зависит от того, движется он или покоится.

Взаимодействие точечных зарядов

Обсуждая электризацию как электростатическое явление, мы не задавали вопрос: «А как определить силу, с которой одно заряженное тело притягивает или отталкивает другое?». Ответ на этот вопрос был найден в конце XVIII столетия независимо друг от друга двумя учёными: Г. Кавендишем в 1774 г. и Ш. Кулоном в 1785 г. Однако современникам стали известны только результаты опытов Кулона.

Закон Кулона

Вы уже встречались с физическими моделями при изучении механики (материальная точка) и молекулярной физики (идеальный газ). В электростатике при изучении взаимодействия электрически заряженных тел эффективной оказывается модель «точечный заряд». Точечный заряд — заряд такого заряженного тела, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и до других тел (т. е. размерами заряженного тела в условиях данной задачи можно пренебречь).

Кулон первым опубликовал результаты своих исследований по взаимодействию неподвижных точечных зарядов.

Он на опыте изучил зависимость сил электрического взаимодействия тел от модулей зарядов этих тел и расстояния между ними. Полученное им соотношение является одним из основных законов электростатики.

Электростатика - основные понятия, формулы и определения с примерами

В своих опытах Кулон использовал специальный прибор — крутильные весы (рис. 80). Крутильные весы представляют собой два стеклянных цилиндра, внутри которых на тонкой серебряной нити подвешено лёгкое непроводящее коромысло. На одном конце коромысла закреплён проводящий шар 1, а на другом — бумажный противовес 3. Шар 1 можно заряжать с помощью такого же проводящего шара 2, находящегося на изолирующем стержне, который крепится на крышке нижнего цилиндра. При соприкосновении шара 1 с заряженным шаром 2 заряд распределяется между ними поровну, и шары отталкиваются. По углу закручивания нити, отсчитываемому по шкале, можно определить силу, с которой заряд шара 2 действует на заряд шара 1. Проведя большое количество опытов, Кулон установил, что модуль сил взаимодействия двух заряженных шаров Электростатика - основные понятия, формулы и определения с примерамиобратно пропорционален квадрату расстояния между ними:Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Разряжая шар 2 прикосновением руки, а затем касаясь им уже заряженного шара 1, Кулон смог получить на нём заряды, модуль которых в 2, 4, 8 и т. д. раз меньше первоначального. Он выяснил, что при неизменном расстоянии модуль сил взаимодействия двух неподвижных небольших заряженных тел прямо пропорционален произведению модулей электрических зарядов каждого из них:

Обобщив экспериментальные данные, Кулон сформулировал закон, получивший его имя.

Модули сил взаимодействия двух неподвижных точечных заряженных тел в вакууме прямо пропорциональны произведению модулей зарядов этих тел, обратно пропорциональны квадрату расстояния между ними, а сами силы направлены вдоль прямой, соединяющей эти тела, являясь силами отталкивания для одноимённых зарядов и силами притяжения для разноимённых.

Электростатика - основные понятия, формулы и определения с примерами(14.1)
где k — коэффициент пропорциональности, зависящий от выбора единиц физических величин, Электростатика - основные понятия, формулы и определения с примерами— модули точечных зарядов, r — расстояние между ними.

Электростатика - основные понятия, формулы и определения с примерами

Силы взаимодействия неподвижных точечных зарядов называют кулоновскими силами. В соответствии с третьим законом Ньютона эти силы противоположно направлены а их модули равны (рис. 81).

Электростатика - основные понятия, формулы и определения с примерами

В СИ коэффициент пропорциональности
Электростатика - основные понятия, формулы и определения с примерами
гдеЭлектростатика - основные понятия, формулы и определения с примерами— электрическая постоянная

Опытным путём установили, что силы взаимодействия двух точечных зарядов не изменяются при появлении третьего точечного заряда или любого числа точечных зарядов. В этом случае силы воздействия

Электростатика - основные понятия, формулы и определения с примерамикаждого из зарядов Электростатика - основные понятия, формулы и определения с примерамина заряд Электростатика - основные понятия, формулы и определения с примерамиопределяют по закону Кулона. Результирующая сила является векторной суммой сил, с которыми каждый из этих зарядов в отдельности воздействует на заряд Электростатика - основные понятия, формулы и определения с примерами(принцип суперпозиции).

Используя принцип суперпозиции и закон Кулона, можно описать электростатическое взаимодействие любой системы зарядов. На рисунке 82 показаны три взаимодействующих между собой точечных электрических заряда: Электростатика - основные понятия, формулы и определения с примерамиРавнодействующей сил, действующих на заряд qi со стороны зарядов Электростатика - основные понятия, формулы и определения с примерамиявляется сила Электростатика - основные понятия, формулы и определения с примерамикоторая равна векторной сумме сил Электростатика - основные понятия, формулы и определения с примерамиСилы Электростатика - основные понятия, формулы и определения с примерамивоздействия зарядов Электростатика - основные понятия, формулы и определения с примерамина заряд Электростатика - основные понятия, формулы и определения с примерамиопределяют по закону Кулона.

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Закон Кулона, описывающий электростатическое взаимодействие, формально похож на закон всемирного тяготения Ньютона, определяющий силы гравитационного взаимодействия двух тел:

В обоих случаях модуль сил взаимодействия:

  • — обратно пропорционален квадрату расстояния между материальными точками;
  • — прямо пропорционален величинам, характеризующим те свойства тел (материальных точек), которые определяют взаимодействия, — массам в одном случае и электрическим зарядам — в другом.

Для измерения сил электрического и гравитационного взаимодействий учёные использовали похожие по устройству экспериментальные установки.

Однако между силами гравитационного и электростатического взаимодействий существует и важное различие. Ньютоновские силы тяготения — это всегда силы притяжения. Кулоновские же силы взаимодействия зарядов могут быть как силами притяжения (между разноимёнными зарядами), так и силами отталкивания (между одноимёнными зарядами).

Закон Кулона в виде (14.1) справедлив не только для точечных зарядов, но и для заряженных тел сферической формы, заряды которых распределены равномерно по всему объёму или по поверхности этих тел (при этом r — расстояние между центрами сферических тел).

Как показывают опыты, взаимодействие электрически заряженных тел в вакууме практически не отличается от их взаимодействия в воздухе. Поэтому формулу (14.1) применяют, описывая взаимодействие заряженных тел как в вакууме, так и в воздухе. Если заряженное тело находится в воде, керосине, масле или какой-нибудь другой непроводящей среде, то модуль сил взаимодействия будет меньше, чем в вакууме.

Электростатика - основные понятия, формулы и определения с примерами

Экспериментальные факты свидетельствуют о том, что воздействие неподвижного в данной инерциальной системе отсчёта точечного заряда на движущийся точечный заряд может быть описано законом Кулона с приемлемой точностью. Так, описание рассеяния а-частиц на ядрах атомов золота в опытах Резерфорда с помощью модели точечного заряда, на который действует кулоновская сила со стороны неподвижного ядра, согласуется с экспериментальными данными в пределах точности последних Модуль скорости движения а-частиц относительно ядра атома золота

Электростатика - основные понятия, формулы и определения с примерами

где с — скорость распространения света в вакууме, с

Два и более движущихся в данной инерциальной системе заряда не могут характеризоваться только кулоновским взаимодействием, так как каждый из них создаёт в окружающем пространстве магнитное поле, которое действует магнитной силой на остальные заряды, движущиеся в нём.

  1. Точечный заряд — заряд такого заряженного тела, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и до других тел (т. е. размерами заряженного тела в условиях данной задачи можно пренебречь).
  2. Закон Кулона: модули сил взаимодействия двух неподвижных точечных заряженных тел в вакууме прямо пропорциональны произведению модулей зарядов этих тел, обратно пропорциональны квадрату расстояния между ними, а сами силы направлены вдоль прямой, соединяющей эти тела, являясь силами отталкивания для одноимённых зарядов и силами притяжения для разноимённых:Электростатика - основные понятия, формулы и определения с примерами
  3. Силы взаимодействия двух точечных зарядов не изменяются при появлении других точечных зарядов. Силы воздействия Электростатика - основные понятия, формулы и определения с примерамикаждого из зарядов Электростатика - основные понятия, формулы и определения с примерамина заряд Электростатика - основные понятия, формулы и определения с примерамиопределяют по закону Кулона, а результирующую силу, действующую на заряд Электростатика - основные понятия, формулы и определения с примераминаходят как векторную сумму сил, с которыми каждый из этих зарядов в отдельности воздействует на заряд Электростатика - основные понятия, формулы и определения с примерами(принцип суперпозиции).
  4. Закон Кулона справедлив для неподвижных точечных зарядов и сферических тел с равномерным распределением заряда по поверхности или объёму.

Пример №1

Две бусинки, электрические заряды которых Электростатика - основные понятия, формулы и определения с примерами40 нКл и Электростатика - основные понятия, формулы и определения с примерами90нКл, закреплены на непроводящем стержне на расстоянии r=40 см друг от друга. Определите: а) где надо поместить третью бусинку, имеющую зарядЭлектростатика - основные понятия, формулы и определения с примерами, чтобы она оказалась в равновесии; б) каким должен быть заряд Электростатика - основные понятия, формулы и определения с примерамитретьей бусинки, чтобы сила электростатического взаимодействия каждой из трёх бусинок с остальными двумя равнялась нулю.

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

x-? -?

Решение, а) Третья бусинка, имеющая заряд Электростатика - основные понятия, формулы и определения с примерамибудет находиться в равновесии, если её поместить в некоторую точку A между зарядами Электростатика - основные понятия, формулы и определения с примерамина прямой, соединяющей эти заряды (рис. 83). Пусть заряд Электростатика - основные понятия, формулы и определения с примерами0, направлена от заряда, а напряжённость поля, созданного точечным отрицательным зарядом Q R от её центра определяют по формуле Электростатика - основные понятия, формулы и определения с примерами. В точках, находящихся на поверхности и внутри сферы, Электростатика - основные понятия, формулы и определения с примерами

Для потенциала выполняется принцип суперпозиции: если поле создано системой n точечных зарядов, то потенциал Электростатика - основные понятия, формулы и определения с примерамитакого поля в любой точке пространства равен алгебраической сумме потенциалов полей в этой же точке пространства, создаваемых каждым из точечных зарядов системы в отдельности:
Электростатика - основные понятия, формулы и определения с примерами(16.5)

Геометрическое место точек в электростатическом поле, потенциалы которых одинаковы, называют эквипотенциальной поверхностью.

Электростатика - основные понятия, формулы и определения с примерами

Используя эквипотенциальные поверхности, можно представлять графически электростатические поля. Через каждую точку поля проходят только одна линия напряжённости и одна эквипотенциальная поверхность. В каждой точке электростатического поля линия напряжённости и эквипотенциальная поверхность взаимно перпендикулярны (рис. 97). Представление электростатического поля с помощью эквипотенциальных поверхностей, как и термин «потенциал», ввёл немецкий учёный К. Ф. Гаусс в 1840 г.

  1. Работа сил электростатического поля по перемещению заряда из начальной точки 1 в конечную точку 2 равна приращению (изменению) потенциальной энергии заряда в этом поле, взятому со знаком минус, или же убыли потенциальной энергии:
  2. Работа силы однородного электростатического поля по перемещению зарядаЭлектростатика - основные понятия, формулы и определения с примерами
  3. Работа сил электростатического поля по перемещению заряда из начальной точки 1 в конечную точку 2 равна приращению (изменению) потенциальной энергии заряда в этом поле, взятому со знаком минус, или же убыли потенциальной энергии: Электростатика - основные понятия, формулы и определения с примерами
  4. Потенциалом электростатического поля в данной точке пространства называют физическую скалярную величину, характеризующую энергетическое состояние поля в данной точке пространства и равную отношению потенциальной энергии точечного (пробного) заряда, помещённого в данную точку поля, к значению этого заряда:Электростатика - основные понятия, формулы и определения с примерами
  5. Если иоле создано системой точечных зарядов, то его потенциал в данной точке пространства равен алгебраической сумме потенциалов полей в этой точке, создаваемых каждым из точечных зарядов системы в отдельности:Электростатика - основные понятия, формулы и определения с примерами

Пример №5

Электрон, двигаясь со скоростью, модуль которой Электростатика - основные понятия, формулы и определения с примерамипопадает в однородное электростатическое поле, направление линий напряжённости которого совпадает с направлением его скорости. Пройдя расстояние d = 2,0 см, электрон начинает двигаться в обратном направлении. Определите модуль напряжённости электростатического поля. Как изменилась потенциальная энергия взаимодействия электрона с полем к моменту перемены направления движения? Масса электрона Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Решение. До изменения направления движения сила однородного электростатического поля совершает отрицательную работу по торможению электрона:

Эту работу также можно определить по формуле А = eEd.

Электростатика - основные понятия, формулы и определения с примерами

Значит, —

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Согласно закону сохранения энергии полная энергия системы «электрон— поле» остаётся неизменной, т. е. Следовательно,

Электростатика - основные понятия, формулы и определения с примерами

, т. е. потенциальная энергия электрона в

Электростатика - основные понятия, формулы и определения с примерами

поле возрастает на величину

Электростатика - основные понятия, формулы и определения с примерами

Разность потенциалов электростатического поля

Напряжение. Связь между напряжением и напряжённостью однородного электростатического поля

Поскольку потенциальная энергия любой системы тел, взаимодействующих посредством потенциальных сил, зависит от выбора нулевой точки (нулевого уровня), то до осуществления такого выбора потенциальная энергия системы может быть определена только с точностью до некоторой постоянной величины. Но изменение потенциальной энергии не зависит от значения этой постоянной величины и однозначно характеризует процесс перехода системы из одного состояния в другое. Это относится и к изменению потенциальной энергии заряженной частицы (заряда) в электростатическом поле.

Понятие потенциала существенно для количественного описания электростатического поля наряду с его напряжённостью. Перемещение заряженных частиц в электростатическом поле, сопровождаемое изменением их потенциальной энергии, характеризуют, используя понятие «разность потенциалов». Как и приращение (изменение) потенциальной энергии, разность потенциалов не зависит от выбора нулевой точки.

Разностью потенциалов Электростатика - основные понятия, формулы и определения с примерамимежду двумя точками электростатического поля называют физическую скалярную величину, равную отношению работы Электростатика - основные понятия, формулы и определения с примерамисовершаемой силой поля при перемещении пробного заряда Электростатика - основные понятия, формулы и определения с примерами из начальной точки 1 в конечную точку 2, к значению перемещаемого заряда:Электростатика - основные понятия, формулы и определения с примерами

Разность потенциалов определяется убылью потенциальной энергии перемещаемого в поле единичного положительного заряда.

Электростатика - основные понятия, формулы и определения с примерами

Противоположную по знаку разности потенциалов величину называют приращением (изменением) потенциала:

Электростатика - основные понятия, формулы и определения с примерами

За единицу разности потенциалов в СИ принимают вольт (В). 1 В — разность потенциалов таких двух точек поля, для которых при перемещении заряда 1 Кл из точки / в точку 2 сила, действующая на заряд со стороны поля, совершила бы работу 1 Дж.

Потенциал проводника можно измерить электрометром. Для этого проводник соединяют со стрелкой электрометра, корпус которого заземляют. Отклонение стрелки электрометра покажет наличие разности потенциалов между проводником и Землёй. Приняв потенциал Земли равным нулю, можно считать, что электрометр измеряет потенциал проводника.

Если имеются два заряженных проводника, то, соединив один из них со стрелкой, а другой с корпусом электрометра, измеряют разность потенциалов между заряженными проводниками.

Связь между напряжением и напряжённостью однородного электростатического поля

Термин «напряжение» ввёл в 1792 г. Вольта. Для электростатических полей понятия «электрическое напряжение» и «разность потенциалов» тождественны.

Работа, совершаемая силами однородного электростатического поля напряжённостью Электростатика - основные понятия, формулы и определения с примерамипри перемещении пробного положительного заряда Электростатика - основные понятия, формулы и определения с примерамииз точки 1 с потенциалом Электростатика - основные понятия, формулы и определения с примерамив точку 2 с потенциалом Электростатика - основные понятия, формулы и определения с примерами, может быть определена в соответствии с выражением (17.1)

Электростатика - основные понятия, формулы и определения с примерами

а в соответствии с выражением (16.1)

Электростатика - основные понятия, формулы и определения с примерами

где d — модуль перемещения заряда вдоль линии напряжённости электростатического поля.

Электростатика - основные понятия, формулы и определения с примерами

Приравнивая соответствующие части равенств, найдём выражение, устанавливающее связь между модулем напряжённости однородного электростатического поля и разностью потенциалов, т. е. между двумя характеристиками электростатического поля: откуда

Электростатика - основные понятия, формулы и определения с примерами

Принимая во внимание, что Электростатика - основные понятия, формулы и определения с примерамиполучим Электростатика - основные понятия, формулы и определения с примерами(17.2)
На основании формулы (17.2) вводят единицу напряжённости СИ вольт

Электростатика - основные понятия, формулы и определения с примерами

на метр модуль напряжённости такого однородного электростатического поля, в котором напряжение между двумя точками, находящимися на одной и той же линии напряжённости на расстоянии 1 м, составляет 1 В.

Электростатика - основные понятия, формулы и определения с примерами

Используя термин «напряжение», на практике точки / и 2 поля выбирают так, чтобы

  1. Работа, совершаемая силами электростатического поля мри перемещении пробного заряда из начальной точки 1 в конечную точку 2, равна произведению значения заряда и разности потенциалов (напряжения) между этими двумя точками поля: Электростатика - основные понятия, формулы и определения с примерами
  2. Модуль напряжённости однородного электростатического поля и разность потенциалов (напряжение) при условии, что Электростатика - основные понятия, формулы и определения с примерамисвязаны между собой соотношением Электростатика - основные понятия, формулы и определения с примерами

Пример №6

В центре сферы с равномерно распределённым положительным зарядом Электростатика - основные понятия, формулы и определения с примерами= 36 нКл находится маленький шарик с отрицательным зарядом, модуль которого Электростатика - основные понятия, формулы и определения с примерами=16нКл. Определите потенциал электростатического поля в точке, находящейся вне сферы на расстоянии r= 10 м от её центра.

Электростатика - основные понятия, формулы и определения с примерами

Решение. Потенциал в искомой точке определим по принципу суперпозиции: Электростатика - основные понятия, формулы и определения с примерами— потенциал электростатического поля положительно заряженной сферы, а Электростатика - основные понятия, формулы и определения с примерами— потенциал электростатического поля отрицательно заряженного шара

Электростатика - основные понятия, формулы и определения с примерами

Поскольку:

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Ответ:

Пример №7

Электростатика - основные понятия, формулы и определения с примерами

Электрон, движущийся вдоль линии напряжённости электростатического поля, в точке поля с потенциалом = 0,90В имеет скорость,

Электростатика - основные понятия, формулы и определения с примерами

дуль которой—. Определите потенциал точки поля, в которой

Электростатика - основные понятия, формулы и определения с примерами

электрон начинает двигаться в обратном направлении. Масса электронакг.

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Решение. При движении электрона силы поля совершают работу Эта работа равна приращению (изменению) кинетической энергии электрона:

Электростатика - основные понятия, формулы и определения с примерами

. С учетом того, что скорость

движения электрона уменьшилась до нуля, получим:

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

откуда

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Проводники в электростатическом поле

Мы уже обсуждали сходство и различие гравитационного и электростатического взаимодействий. Следует отметить ещё одно их существенное различие. От сил тяготения нельзя защититься. Нет такого убежища, в котором бы силы тяготения не действовали. А вот получить надёжную защиту от электростатических сил вполне возможно. Такую защиту может обеспечить любой проводник. Так какие же свойства проводников позволяют использовать их для электростатической защиты?

В металлах свободными заряженными частицами являются электроны. Это происходит потому, что электроны, находящиеся на внешних оболочках атомов, утрачивают связи со своими атомами и могут относительно свободно передвигаться по всему объёму металла.

Электростатика - основные понятия, формулы и определения с примерами

Выясним, что происходит в однородном металлическом проводнике, если его внести в электростатическое поле. Для этого поместим металлический проводник А в электростатическое поле, созданное двумя заряженными пластинами В и С (рис. 99). Напряжённость этого поля направлена от положительно заряженной пластины В к отрицательно заряженной пластине С.

Электростатика - основные понятия, формулы и определения с примерами

Под действием электрических сил свободные электроны наряду с непрекращающимся тепловым движением начнут двигаться упорядоченно. Они будут накапливаться слева у поверхности проводника А, создавая там избыточный отрицательный заряд. Недостаток электронов на правой стороне проводника приведёт к возникновению на ней избыточного положительного заряда.

Перераспределившиеся заряды создают собственное электрическое поле Электростатика - основные понятия, формулы и определения с примерамиЛинии напряжённости этого поля в проводнике направлены в сторону, противоположную линиям напряжённости внешнего поля Электростатика - основные понятия, формулы и определения с примерамиУпорядоченное перемещение свободных электронов в проводнике прекратится, если собственное поле Электростатика - основные понятия, формулы и определения с примерамискомпенсирует внешнее Электростатика - основные понятия, формулы и определения с примерамиВ этом случае напряжённость результирующего поля внутри проводника станет равной нулю, т. е. электрическое поле в проводнике исчезнет.

Следовательно, электростатическое поле внутри проводника отсутствует. Суммарный заряд любой внутренней области проводника равен нулю и не влияет на распределение зарядов на его поверхности и на напряжённость поля внутри проводника. На этом свойстве проводников основана электростатическая защита. Чтобы защитить чувствительные к электрическому полю приборы, их помещают внутрь заземлённых полых проводников со сплошными или сетчатыми стенками. Чаще, однако, экранируют не приборы, а сам источник электрического поля, от нежелательного воздействия которого необходимо защитить расположенные поблизости устройства.

Следствием того, что напряжённость электростатического поля внутри однородного проводника равна нулю, является то, что потенциал всех точек проводника одинаков. В самом деле, если напряжённость поля равна нулю, то разность потенциалов между любыми двумя точками проводника равна нулю. Поэтому можно говорить о потенциале проводника, не указывая конкретную точку, в которой он определён.

Электростатическая индукция

В соответствии с законом сохранения электрического заряда модули избыточных зарядов, возникающих на противоположных поверхностях первоначально незаряженного проводника при внесении его в электростатическое поле, должны быть равными. Проверим это на опыте.

Закрепим на непроводящих стержнях два плотно соприкасающихся металлических цилиндра А и В с прикреплёнными к ним листочками тонкой бумаги. Внесём их в электростатическое поле положительно заряженного шара (рис. 100, а). Листочки бумаги разойдутся, что свидетельствует о появлении зарядов на цилиндрах. Свободные электроны под действием поля, создаваемого зарядом шара, переместятся с цилиндра В на цилиндр А, зарядив его отрицательно. Цилиндр В из-за недостатка электронов станет положительно заряженным.

Явление, при котором на поверхности проводника (в данном случае на поверхности соединённых цилиндров), помещённого в электростатическое поле, появляются электрические заряды, называют электростатической индукцией или электризацией через влияние. Электрические заряды, возникающие в результате электростатической индукции, называют индуцированными.

Электростатика - основные понятия, формулы и определения с примерами

Если заряженный шар убрать, то угол расхождения листочков бумаги уменьшится до нуля. Это объясняется тем, что в отсутствие электростатического поля, создаваемого зарядом шара, электроны равномерно распределяются по всему объёму обоих цилиндров.

При разъединении цилиндров в поле заряженного шара на них окажутся противоположные по знаку заряды (рис. 100, б), модули которых равны. Эти заряды сохранятся и в том случае, если заряженный шар, создающий поле, убрать (рис. 100, в). Только в этом случае заряды будут у соседних оснований цилиндров. В том, что модули зарядов обоих цилиндров равны, можно убедиться, соединив их (рис. 100, г): угол между листочками равен нулю.

Распределение зарядов в проводнике

Выясним, как распределяются заряды в наэлектризованном проводнике. Проведём опыт. Сообщим проводнику электрический заряд. Маленьким шариком на изолирующей ручке будем касаться различных точек на внешней поверхности заряженного полого металлического шара, а затем электрометра (рис. 101, а). Отмечая каждый раз угол отклонения стрелки электрометра, можно убедиться, что на внешней поверхности шара заряд распределяется равномерно. Если же коснуться маленьким шариком внутренней поверхности заряженного полого шара, а затем электрометра, то стрелка электрометра не отклонится (рис. 101, б). Следовательно, на внутренней поверхности шара избыточного заряда нет, т. е. заряды, сообщённые проводнику, располагаются на его внешней поверхности.

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Зарядим проводник стреловидной формы положительным зарядом. Наибольший заряд, приходящийся на клу обкладками плоского конденсатора намного меньше их собственных размеров. Тогда внутри конденсатора электрическое поле однородное, а вне его равно нулю.

Электроемкость конденсатора зависит от его размеров и формы, а также свойств заполняющего его диэлектрика.

Электростатика - основные понятия, формулы и определения с примерами

Найдем электроемкость плоского конденсатора. Внутри него электрическое поле складывается из полей положительно и отрицательно заряженных обкладок. Вследствие того что расстояние между обкладками намного меньше их размеров, поле внутри конденсатора можно найти согласно принципу суперпозиции полей, создаваемых равномерно заряженными бесконечными плоскостями, с учетом диэлектрической проницаемости заполняющего его вещества:

Исходя из определения поверхностной плотности заряда

Электростатика - основные понятия, формулы и определения с примерами
находим
Электростатика - основные понятия, формулы и определения с примерами(2)
Искомое напряжение между обкладками
Электростатика - основные понятия, формулы и определения с примерами
Следовательно,
Электростатика - основные понятия, формулы и определения с примерами
где Электростатика - основные понятия, формулы и определения с примерами— электрическая постоянная, Электростатика - основные понятия, формулы и определения с примерами— диэлектрическая проницаемость вещества между пластинами, S — площадь обкладки, d — расстояние между обкладками.

Емкость плоского конденсатора прямо пропорциональна площади его обкладок, диэлектрической проницаемости заполняющего его вещества и обратно пропорциональна расстоянию между пластинами.

Разность потенциалов между обкладками конденсатора нельзя повышать беспредельно, так как увеличиваются электрические силы, стремящиеся оторвать друг от друга разноименно заряженные части молекул диэлектрика. При некотором предельном для данного конденсатора значении разности потенциалов происходит разрушение диэлектрика. Заряды обкладок практически мгновенно нейтрализуются, т. е. происходит пробой конденсатора. Конденсатор при этом выходит из строя. Внешне пробой конденсатора часто проявляется в виде электрических искр, проходящих через диэлектрик. Таким образом, каждый конденсатор характеризуется максимальным рабочим напряжением, при превышении которого происходит его пробой.
В зависимости от используемого диэлектрика различают бумажные, воздушные, электролитические (рис. 98), керамические, слюдяные, полистирольные конденсаторы.

Электростатика - основные понятия, формулы и определения с примерами

Кроме того, по используемому рабочему напряжению конденсаторы подразделяются на низковольтные и высоковольтные.
К низковольтным относятся электролитические и слюдяные конденсаторы с напряжением пробоя 100 В. Если напряжение пробоя превышает 100 В, то конденсаторы относятся к высоковольтным. Примером высоковольтного конденсатора, разность потенциалов в котором может быть доведена до 100 кВ, является лейденская банка.

Электростатика - основные понятия, формулы и определения с примерами

На электрических схемах конденсатор обозначается символом

Соединения конденсаторов

В настоящее время практически ни одно электронное или радиотехническое устройство не обходится без конденсаторов.

Конденсаторы соединяют в батареи, чтобы обеспечить требуемую электроемкость при заданном напряжении. Соединение конденсаторов в батарее может быть параллельным, последовательным или смешанным.

При параллельном соединении конденсаторов (рис. 99) и подключении его к источнику напряжением Электростатика - основные понятия, формулы и определения с примерамиобкладки конденсаторов соединены между собой проводником, и поэтому имеют одинаковый потенциал: верхние — Электростатика - основные понятия, формулы и определения с примерамиа нижние — Электростатика - основные понятия, формулы и определения с примерамиЭту разность потенциалов между обкладками конденсатора Электростатика - основные понятия, формулы и определения с примераминазывают напряжением U.

Электростатика - основные понятия, формулы и определения с примерами

Напряжение U на обкладках всех конденсаторов одно и то же, т. е. U= Электростатика - основные понятия, формулы и определения с примерамии
Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Кроме того, знаки зарядов нижних обкладок конденсаторов одинаковы и противоположны знакам зарядов верхних обкладок, а суммарный заряд батареи q равен сумме зарядов на каждом из конденсаторов (см. рис. 99):

Электростатика - основные понятия, формулы и определения с примерами

Разделив это выражение на U, получим

Электростатика - основные понятия, формулы и определения с примерами

Следовательно, электроемкость батареи при параллельном соединении конденсаторов определяется по формуле

В случае, когда Электростатика - основные понятия, формулы и определения с примерамиЭлектростатика - основные понятия, формулы и определения с примерамиемкость батареи Электростатика - основные понятия, формулы и определения с примерамиТаким образом, электроемкость батареи параллельно соединенных конденсаторов всегда превышает наибольшую из электроемкостей конденсаторов, составляющих ее.

Электростатика - основные понятия, формулы и определения с примерами

Параллельное соединение конденсаторов применяется для увеличения емкости системы, при этом

При последовательном соединении конденсаторов (рис. 100) и подключении его к источнику напряжением Электростатика - основные понятия, формулы и определения с примерамизаряд +q переходит от источника на левую обкладку конденсатора емкостью Электростатика - основные понятия, формулы и определения с примерамиа заряд -q — на правую обкладку конденсатора емкостью Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Если участок между конденсаторами до подключения к источнику был электрически нейтральным, то согласно закону сохранения заряда результирующий заряд на нем должен остаться равным нулю. Вследствие электризации через влияние на правой обкладке первого конденсатора появится заряд — q, а на левой обкладке последнего конденсатора — +q. Таким образом, при последовательном соединении конденсаторов соединяются обкладки с разными знаками зарядов (см. рис. 100).

В результате одинаковым является заряд q каждого конденсатора, равный полному заряду батареи:
Электростатика - основные понятия, формулы и определения с примерами
а напряжение батареи последовательно соединенных конденсаторов равно сумме напряжений на всех конденсаторах:
Электростатика - основные понятия, формулы и определения с примерами

Если учесть, что Электростатика - основные понятия, формулы и определения с примерамито емкость батареи конденсаторов при их последовательном соединении можно определить из соотношения
Электростатика - основные понятия, формулы и определения с примерами

В случае, когда Электростатика - основные понятия, формулы и определения с примерамиемкость батареи Электростатика - основные понятия, формулы и определения с примерами

Таким образом, при последовательном соединении емкость батареи всегда не превышает наименьшую из емкостей конденсаторов, составляющих ее.

Электростатика - основные понятия, формулы и определения с примерами

Последовательное соединение конденсаторов применяется для увеличения
предельного рабочего напряжения
батареи, так как максимально допустимое напряжение батареи будет больше, чем у любого составляющего ее конденсатора.

Энергия заряженного конденсатора. Энергия электрического поля

Работа, совершаемая внешними силами над системой, идет на увеличение ее энергии: Электростатика - основные понятия, формулы и определения с примерамиРабота внутренних сил системы совершается за счет уменьшения ее энергии: Электростатика - основные понятия, формулы и определения с примерами

Заряженный конденсатор обладает энергией, которую можно рассматривать либо как потенциальную энергию взаимодействия зарядов, сосредоточенных на обкладках, либо как энергию создаваемого этими зарядами электрического поля, заключенного между обкладками конденсатора.

При зарядке конденсатора в нем создается электростатическое поле, при разрядке оно исчезает. Работа, совершенная внешним источником для зарядки конденсатора, идет на увеличение энергии поля, а работа при разрядке конденсатора совершается за счет уменьшения энергии поля. Можем сделать вывод, что электростатическое поле обладает определенным количеством потенциальной энергии.

Электростатика - основные понятия, формулы и определения с примерами

Энергия заряженного конденсатора определяется работой, совершенной для его зарядки (способ зарядки на величину энергии не влияет), т. е. на перемещение заряда с одной обкладки на другую для создания заданного напряжения U на обкладках:

Работа А, совершаемая электрическим полем при разрядке конденсатора.
определяется площадью S треугольника ОАВ в предположении, что напряжение U па конденсаторе равномерно уменьшалось до нуля в процессе разрядки
(рис. 102):

Электростатика - основные понятия, формулы и определения с примерами
Здесь Электростатика - основные понятия, формулы и определения с примерами— среднее значение разности потенциалов при разрядке.

Электростатика - основные понятия, формулы и определения с примерами

Изменение энергии электрического поля равно работе, совершенной при разрядке конденсатора: Электростатика - основные понятия, формулы и определения с примерами
С учетом определения электроемкости Электростатика - основные понятия, формулы и определения с примераминаходим

Электростатика - основные понятия, формулы и определения с примерами

Получим формулу для энергии плоского конденсатора аналитически, исходя из того, что для полной разрядки конденсатора необходимо совершить работу А, чтобы переместить электроны, создающие отрицательный заряд — q обкладки, на положительно заряженную обкладку. В результате электрическое поле исчезнет.

С одной стороны, если U — напряжение на обкладках конденсатора, Электростатика - основные понятия, формулы и определения с примерами— напряженность электростатического поля, d — расстояние между обкладками конденсатора, то для разрядки конденсатора необходимо совершить работу
Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

С другой стороны, работа электростатических сил совершается за счет убыли потенциальной энергии конденсатора:

Электростатика - основные понятия, формулы и определения с примерами

В конденсаторе, напряженность поля внутри которого Е, заряд одной обкладки создает поле, модуль напряженности которого В поле этой обкладки находится заряд q, распределенный по поверхности другой обкладки.

Электростатика - основные понятия, формулы и определения с примерами

Потенциальная энергия этого заряда в поле конденсатора будет

Здесь d — расстояние между обкладками.

Электростатика - основные понятия, формулы и определения с примерами

Вследствие того что напряжение U на обкладках конденсатора и модуль напряженности поля в нем связаны соотношением Е — Ud, энергия конденсатора определяется полученным ранее графически соотношением

С учетом выражения для электроемкости плоского конденсатора Электростатика - основные понятия, формулы и определения с примерами
и напряжения U = Ed получим Электростатика - основные понятия, формулы и определения с примерамигде Sd=V — внутренний объем конденсатора.
Таким образом, энергию плоского конденсатора можно рассчитать по формуле

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Поле плоского конденсатора существует практически только внутри него — между обкладками. Тогда энергию заряженного конденсатора можно представить также как энергию поля, локализованного в пространстве между обкладками с плотностью энергии

Плотность энергии поля численно равна энергии поля, находящейся в единичном объеме:

Электростатика - основные понятия, формулы и определения с примерами

Электростатика - основные понятия, формулы и определения с примерами

Она пропорциональна квадрату напряженности электрического поля в этой
области. Это выражение справедливо не только для однородных полей, но и для электростатических полей любой конфигурации в случае, когда вещество, заполняющее пространство, изотропное.
Впервые понятие плотности энергии электрического поля ввел Дж. Максвелл. Он полагал, что энергия электрического поля рассредоточена по всему объему с плотностью Наличие энергии у электрического поля является доказательством того, что поле является особым видом материи.

Основные формулы электростатики

Закон сохранения электрического заряда:
Электростатика - основные понятия, формулы и определения с примерами
Закон Кулона:
Электростатика - основные понятия, формулы и определения с примерами
Напряженность электрического поля:
Электростатика - основные понятия, формулы и определения с примерами
Принцип суперпозиции:
Электростатика - основные понятия, формулы и определения с примерами
Работа сил электростатического поля:
Электростатика - основные понятия, формулы и определения с примерами
Потенциал Электростатика - основные понятия, формулы и определения с примерамиэлектрического поля:
Электростатика - основные понятия, формулы и определения с примерами
Потенциал Электростатика - основные понятия, формулы и определения с примерамиэлектрического поля системы точечных зарядов:
Электростатика - основные понятия, формулы и определения с примерами
Разность потенциалов:
Электростатика - основные понятия, формулы и определения с примерами
Диэлектрическая проницаемость вещества:
Электростатика - основные понятия, формулы и определения с примерами
Электроемкость конденсатора:

Электростатика - основные понятия, формулы и определения с примерами
Электроемкость плоского конденсатора:
Электростатика - основные понятия, формулы и определения с примерами

Последовательное соединение конденсаторов:
Электростатика - основные понятия, формулы и определения с примерами
Параллельное соединение конденсаторов:
Электростатика - основные понятия, формулы и определения с примерами
Электроемкость уединенного проводника:
Электростатика - основные понятия, формулы и определения с примерами
Энергия заряженного конденсатора:
Электростатика - основные понятия, формулы и определения с примерами
Плотность энергии электростатического поля:
Электростатика - основные понятия, формулы и определения с примерами
Элементарный заряд:
Электростатика - основные понятия, формулы и определения с примерами
Электрическая постоянная:
Электростатика - основные понятия, формулы и определения с примерами

Единицы измерения основных величин, встречающихся в электростатике

Электростатика - основные понятия, формулы и определения с примерами

  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
  • Закон сохранения заряда в физике
  • Электрическое поле заряженного шара
  • Электрические явления в физике
  • Потенциал поля точечного заряда в физике
  • Тепловые двигатели и их КПД
  • Тепловое состояние тел
  • Изменение агрегатного состояния вещества
  • Электродинамика

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Связь между напряженностью и разностью потенциалов — понятия и формулы

Связь между напряженностью и разностью потенциалов является важной темой в разделе физики под названием электродинамика. Ее можно установить, используя представление об эквипотенциальных поверхностях, а также характер каждой из частей по отдельности. Кроме того, важно знать основные формулы напряженности и других электродинамических параметров.

Формула напряженности разность потенциалов

Разность потенциалов

Для того чтобы понять связь между напряженностью и потенциалом, нужно рассмотреть некоторые определения. Так, указанный параметр представляет собой скалярную величину, какая равна соотношению между энергией заряда в поле к непосредственно заряду. То есть, f=W/q есть энергетический тип характеристики поля в определенной точке. Для разности потенциалов формула имеет вид U=f1-f2=A/q. Здесь A является работой, затрачиваемой на переходы зарядного элемента по поверхности, а q есть кулоновский заряд. При этом электростатическая величина не зависит от количества заряда, каков находится в поле. То есть, энергия будет зависеть от выбора координатной системы и находится с точностью до постоянной. В зависимости от условий задачи за начало отсчета выбирается один из рассматриваемых вариантов:

Разность потенциалов

  1. Потенциал планеты Земля.
  2. Бесконечно удаленная точка поля, которой можно обозначить любую часть пространства.
  3. Отрицательная пластина емкостного или аналогичного конденсатора.

Численно он будет равняться работе по перемещению единичного плюсового заряда из точки электрического поля через бесконечность. Единица измерения указанного электрического параметра выражается в вольтах.

Разность потенциалов это в физике есть напряжение, которое также входит в раздел электрической динамики. Под ним понимают разницу значений в начальной и финальной точке траектории. Оно численно эквивалентно работе электростатического поля при перемещениях единичного положительного заряда вдоль силовых линий.

Физическая связь

Формула напряженности имеет вид E=U/delta (d). Это обозначает скорость изменения параметра вдоль направления d. Из указанного соотношения можно отметить:

Формула напряженности

  • Вектор напряженности всегда направляется на уменьшение электрического и динамического потенциалов.
  • Электрическое поле появляется в те моменты, когда можно связать разность потенциалов.
  • Напряженность поля равняется соотношению вольта к метру, если между 2 точками на расстоянии 1 м друг от друга имеется разность в 1 В.

Для равномерно распределенного показателя важно наличие эквипотенциальных поверхностей. Их свойства заключаются в том, что работа при перемещении заряда вдоль такой поверхности не происходит, а вектор напряженности перпендикулярно расположен к ЭПП в любой точке.

Именно благодаря такому параметру можно отыскать некоторые физические величины. Напряженность помогает установить изменение скорости потенциального перемещения вдоль линий магнитного поля во времени. Энергетические характеристики используют в других разделах электродинамики и физики.

Неоднозначность определения

Так как величина определяется с точностью до произвольной постоянной (при этом все величины не изменятся), физический смысл имеет только разность, а не сама физическая единица.

Связь между напряженностью и разностью потенциалов

При этом все остальные заряды по модулю при таких операциях как бы заморожены. Перемещение чаще всего воображаемое, хотя если остальные заряды закреплены или пробный очень мал, и при этом переносится относительно быстро, то формула определения разности потенциальных изменений верна.

Иногда для того, чтобы убрать неоднозначность, стоит применить некоторые естественные условия. Нередко такую физическую величину определяют так, чтобы она была равна нулю на бесконечности для любого числа точечных зарядов. Тогда для всех конечных систем зарядов выполнится аналогичное условие, а над константой можно не особо задумываться и принимать любую точку.

Также некоторые сложности имеются при употреблении терминов напряжение и электрический потенциал. Они имеют разный смысл, при этом нередко употребляются как синонимичные для электростатического потенциала. При неимении изменяющихся магнитных полей напряжение будет равняться разности потенциалов.