Запирающее напряжение для фотоэффекта

Фотоэффект в физике: что это такое, формулы, виды, применение

Фотоэлектрический эффект (фотоэффект) — это физический процесс, в котором электроны взаимодействуют со светом или любым другим электромагнитным излучением. В этой статье вы узнаете о физических основах фотоэлектрического эффекта. Мы также объясним три вида этого явления и два экспериментальных метода его обнаружения.

Фотоэлектрическое явление — один из тех эффектов, открытие которого стало результатом упорного труда и многочасовых лабораторных исследований многих ученых. До того как Альберт Эйнштейн объяснил этот эффект, введя понятие квантов, то есть порций энергии, многие исследователи, среди которых были Генрих Герц и Александр Столетов, тщательно изучали различные аспекты этого явления. По всей вероятности, никто из них не предполагал, какое практическое значение будет иметь их работа.

Простое объяснение фотоэффекта

Атомы или молекулы содержат связанные электроны. Когда свет попадает на молекулы или отдельные атомы, при определенных условиях возможно взаимодействие электронов со светом. Чтобы понять фотоэлектрический эффект, мы представляем свет как частицу (называемую фотоном). Фотон обладает энергией E, которую можно вычислить по частоте f света: E = h * f .

Здесь h — постоянная Планка. Эта энергия поглощается электроном. Вы можете представить этот перенос энергии как поглощение фотона электроном. Минимальная энергия, которую электроны должны поглотить, является их энергией связи, или, более точно, работой выхода WA. Только после этого электрон может освободиться от атома или металла. Высвобожденные электроны могут быть измерены в виде электрического тока.

Виды фотоэффекта

Существует три различных разновидности фотоэлектрического эффекта, с которыми мы познакомим вас далее.

Внешний фотоэффект

Внешний фотоэлектрический эффект — это явление эмиссии электронов из металла под воздействием падающего электромагнитного излучения. Механизм явления заключается в том, что фотоны излучения передают свою энергию электронам, что приводит к их эмиссии за пределы металла. Максимальная кинетическая энергия электрона равна энергии фотона минус работа выхода. Работа выхода — это энергия связи электрона в металле, обычно порядка нескольких электрон-вольт.

Более подробное объяснение.

Когда фотоны попадают в металл или полупроводник, они передают свою энергию электронам. Часть энергии необходима для того, чтобы освободить электроны от атомной связи и позволить им уйти с поверхности металла (работа выхода WA). Это взаимодействие называется внешним фотоэлектрическим эффектом. Остаточная энергия служит для ускорения электронов. Энергетическое соотношение следующее: h * f = Ekin + WA , где

где Ekin — это кинетическая энергия высвобожденных электронов. Поэтому кинетическая энергия фотоэлектрона описывается формулой: Ekin = h * f — WA

Мы видим, что должна существовать граничная частота fгр, выше которой электроны вообще не могут быть освобождены. Это следует из уравнения: h * fгр = WA и зависит от материала. Работа выхода для металлов обычно составляет несколько эВ.

Альберт Эйнштейн изучил внешний фотоэлектрический эффект с помощью квантования света. Таким образом, внешний фотоэлектрический эффект представляет собой важную веху в развитии квантовой механики.

Внутренний фотоэффект

Внутренний фотоэлектрический эффект также основан на передаче энергии фотонов электронам. Однако они не покидают материал, в котором находятся, а изменяют электронную оболочку в атоме. Это может привести к изменению проводимости материала и, следовательно, протеканию электрического тока.

Более подробное объяснение.

Внутренний фотоэффект возникает в полупроводниках — материалах, электропроводность которых меньше, чем у проводников, и больше, чем у изоляторов. Чтобы лучше понять его механизм, давайте вспомним зонную теорию проводимости. Электронные энергетические уровни в полупроводниках относятся к двум группам — валентной зоне и зоне проводимости. Эти зоны энергетически разделены возбужденной областью. Электроны с энергией в валентной зоне связаны в атомах и не участвуют в протекании электрического тока. Электроны с энергией, принадлежащей зоне проводимости, свободны и могут двигаться под действием приложенного напряжения, т.е. проводить электрический ток.

Изменение энергии электрона от энергии валентной зоны до энергии зоны проводимости при поглощении энергии фотона электромагнитного излучения называется внутренним фотоэлектрическим эффектом.

В результате полоса проводимости обогащается свободным носителем отрицательного заряда — электроном, а валентная зона обогащается электронной дыркой, т.е. вакансией, оставленной электроном, которая также участвует в протекании электрического тока. Это увеличивает проводимость материала.

Для того чтобы электроны поднялись в полосу проводимости, энергия облученного света должна быть больше, чем ширина запрещённой зоны Egap : h * f > Egap . Ширина запрещённой зоны относится к разности энергий между валентной зоной и зоной проводимости.

Полупроводник, состоящий из одного чистого материала, называется собственным полупроводником. В таких материалах число отрицательных носителей заряда в зоне проводимости — электронов — равно числу положительных зарядов в валентной зоне — дырок. На практике, однако, часто используются легированные полупроводники, т.е. обогащенные небольшим количеством другого материала. В зависимости от типа легирующего элемента различают два типа полупроводников: n-типа и p-типа. В полупроводнике p-типа преобладают дырки. Важно помнить, что речь идет только о носителях заряда, участвующих в проведении электричества, весь кристалл электрически нейтрален.

Внутренний фотоэффект также имеет место в солнечных батареях. Когда свет попадает на пограничный слой солнечного элемента (очень тонкая область на поверхности с электрическим полем), электроны высвобождаются из кристаллической связи и движутся в электрическом поле. Этот электрический ток может быть воспринят потребителем и вызывает фотонапряжение.

Молекулярный фотоэффект / атомный фотоэффект

Если облученные фотоны высвобождают электрон из отдельных атомов или молекул, они электрически заряжаются или ионизируются недостающим электроном. Это называется фотоионизацией и наблюдается, например, с помощью рентгеновских лучей. Для молекулярного фотоэлектрического эффекта требуется гораздо более высокочастотный свет, поскольку электроны прочно связаны в атомах.

Формула фотоэлектрического эффекта

Мы используем следующее соотношение для расчета физических величин: h * f = Ekin + WA

Если свет обладает энергией, достаточной для выброса электронов, мы можем вычислить граничную частоту по следующей формуле: fгр = WA / h .

Используя формулу для кинетической энергии, мы определяем скорость освобожденных электронов по формуле:

Формула скорость освобожденных электронов

Методы обнаружения фотоэффекта

Далее мы покажем вам два метода обнаружения фотоэлектрического эффекта и, следовательно, выхода электронов.

Метод встречного поля

В методе встречного поля металлический катод облучается монохроматическим светом с частотой f. Без приложенного напряжения можно обнаружить фототок. Если приложить противодействующее напряжение UG так, чтобы катод был заряжен положительно, а анод — отрицательно, то электроны, высвобождаемые внешним фотоэлектрическим эффектом, замедляются. Необходимая для этого работа: W = e * UG .

Фотоэффект: метод встречного поля

Если напряжение настолько велико, что электроны не достигают анода, то применяется следующее соотношение: Ekin = e * UG .

Встречное поле полностью компенсирует кинетическую энергию электронов. Из этой зависимости мы можем определить скорость электронов. Метод встречного поля также дает нам возможность определить постоянную Планка h. При известной работе выхода, h можно найти из уравнения: h * f = e * UG + WA

Стержень с фотоэффектом

Мы можем воспроизвести фотоэлектрический эффект в эксперименте со стержнем из ПВХ и металлической пластиной, подключенной к электрометру. Если стержень отрицательно заряжен в результате трения, то он имеет избыток электронов. Металлическая пластина нейтральна, электрометр не отклоняется.

Стержневой метод

Если привести стержень в контакт с пластиной, то избыточный заряд в стержне уравновесится. В результате на пластине появляется избыток электронов, и электрометр показывает отрицательное значение.

Компенсация избыточного заряда в стержне

Если облучать металлическую пластину лампой с парами ртути, электрометр становится положительным. Электроны высвобождаются из пластины под действием внешнего фотоэлектрического эффекта. В металлической пластине не хватает электронов.

Облучение металлической пластины

Применение фотоэффекта

Сегодня внешний и внутренний фотоэлектрический эффект лежат в основе таких распространенных устройств, как фотоэлементы, солнечные батареи или ПЗС-матрицы.

Фотоэлемент.

Фотография фотоэлемента в 1940-х годах

Наиболее распространенным устройством, использующим внешнее фотоэлектрическое явление, является фотоэлемент. Первые фотоэлементы были разработаны еще в 1890-х годах и начали широко использоваться в первой половине 20-го века. Простейший фотоэлемент состоит из двух электродов, катода и анода, помещенных в вакуумную колбу.

Между электродами прикладывается напряжение так, чтобы катод был соединен с положительным полюсом питающего напряжения. Если электромагнитное излучение не попадает на катод, электрический ток в цепи не течет. Когда катод освещается излучением с энергией фотонов, превышающей работу выхода материала катода, электроны выбиваются из катода и мигрируют к аноду, вызывая протекание электрического тока. Освещенный фотоэлемент проводит электрический ток.

Схемы, содержащие фотоэлемент, могут использоваться, например, для освещения уличных фонарей. Лампы загораются в сумерках. Механизм, заставляющий их светиться, реагирует на отсутствие света, то есть на прекращение протекания электрического тока в цепи, содержащей фотоэлемент. Пример такой схемы представлен на рис. 6.

Схема уличного фонаря, который автоматически загорается после наступления темноты

Освещенный фотоэлемент проводит электрический ток. В цепи находится электромагнит. Если через электромагнит проходит электрический ток, создаваемое магнитное поле притягивает рычаг выключателя, размыкая цепь лампы, и лампа выключается. Когда свет прерывается, электрический ток в цепи фотоэлемента прекращается, электромагнит выключается, цепь лампы замыкается, и лампа окончательно зажигается.

Фотоэлектронный умножитель.

Фотоумножитель

Фотоумножители — это устройства, используемые для измерения света. Чаще всего они подключаются к сцинтиллятору, который представляет собой материал, поглощающий ионизирующее излучение (например, гамма- или бета-излучение) и испускающий видимый или ультрафиолетовый свет. Излучаемый свет поглощается фотоумножителем и преобразуется в электрический сигнал.

Сцинтиллятор в сочетании с фотоумножителем представляет собой детектор ионизирующего излучения, т.е. устройство, которое поглощает ионизирующее излучение и генерирует электрический сигнал в зависимости от поглощенного излучения.

Устройство фотоумножителя очень похоже на устройство вакуумного фотоэлемента. Его важнейшими элементами являются фотокатод, где происходит внешний фотоэлектрический эффект, и анод, где накапливается заряд. Кроме того, в области между катодом и анодом находится ряд электродов, задача которых — усилить заряд, то есть увеличить количество электронов, попадающих на анод. Эти электроды называются динодами. Все три типа электродов помещаются в сильное электрическое поле. Механизм работы фотоумножителя показан на рис. 8.

Схема построения фотоумножителя

Фотоны света, испускаемые сцинтиллятором, достигают фотокатода, вызывая эмиссию электрона под действием внешнего фотоэлектрического явления. Электрон ускоряется в электрическом поле, что приводит к увеличению его кинетической энергии.

При столкновении с динодом электрон вызывает испускание нескольких вторичных электронов, которые также ускоряются и также умножаются при столкновении с другим динодом. Количество электронов увеличивается экспоненциально, так что конечный электрический сигнал, достигающий анода, может быть измерен.

Фотоумножители характеризуются высокой чувствительностью. Это означает, что их можно использовать для измерения света очень низкой интенсивности. В этом отношении они явно превосходят ПЗС-матрицы.

Фотоэлектрический (солнечный элемент).

Фотоэлектрический элемент — это устройство, в котором энергия фотона света преобразуется в электрическую энергию.

В солнечных батареях используются p-n-переходы. Фотоны, падающие на границу раздела полупроводников, вызывают выбивание электронов из валентного слоя в слой проводимости, т.е. образуется электронно-дырочная пара. Из-за пространственного распределения зарядов на p-n-переходе электроны диффундируют к полупроводнику n-типа, а дырки диффундируют к полупроводнику p-типа и остаются там. Накопление заряда создает разность потенциалов на границе раздела, т.е. электрическое напряжение. В этом процессе энергия солнечного света напрямую преобразуется в электрическую энергию. Поэтому он является отличным источником электрической энергии. Однако стоит помнить, что для хранения электрической энергии требуются батареи.

ПЗС-матрица.

ПЗС-матрица — это светочувствительный элемент, который вытеснил традиционную фотопленку, открыв путь к созданию и распространению цифровой фотографии. Матрица состоит из множества полупроводниковых пикселей размером около десятка квадратных миллиметров. Свет, падающий на полупроводниковый пиксель, приводит к выбиванию электрона из валентной зоны. На каждый пиксель наносится электрод для сбора и хранения заряда.

Размер заряда зависит от интенсивности света, освещающего пиксель. Сама ПЗС-матрица не различает цвета. Эта функция реализуется с помощью цветовых фильтров с тремя основными цветами — красным, зеленым и синим. Важным параметром для ПЗС является их квантовая эффективность, которая определяет, какой процент падающего света улавливается. Современные матрицы имеют квантовую эффективность 70%, что более чем в 10 раз выше, чем у традиционной фотопленки.

Пример задачи по фотоэффекту

Мы облучаем вольфрамовую пластину (работа выхода WA = 4,6 эВ) монохроматическим светом с частотой f = 6,75 * 10 15 Гц. Мы хотим узнать, достаточно ли энергии света для высвобождения электронов из пластины?

Для этого мы вычисляем граничную частоту:

fгр = WA / h = 4,6 эВ / 6,626 * 10⁻³⁴ Дж*с = 7,37 * 10 -19 Дж / 6,626 * 10⁻³⁴ Дж*с = 1,11 * 10 15 Гц

Частота облучаемого света превышает это значение. Поэтому электроны высвобождаются в результате фотоэлектрического эффекта. Скорость этих электронов составляет:

Скорость электронов фотоэффект

Список использованной литературы

  1. Ворончев Т. А., Соболев В. Д. Физические основы электровакуумной техники. — М.: Высшая школа, 1967. — с. 217—220
  2. Тауц Я. Фото- и термоэлектрические явления в полупроводниках. — М.: ИЛ, 1962. — С. 141.
  3. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.
  4. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.
  5. Рывкин С. М. Фотоэлектрические явления в полупроводниках. — М.: Физматлит, 1963. — 494 с.

Фотоэффект в физике и его применение — формулы и определение с примерами

На основе волновой теории света можно предположить, что:

  • – свет любой длины волны должен вырывать электроны из металла;
  • – на вырывание электрона из металла требуется определенное время;
  • – число вырванных электронов и их энергия должны быть пропорциональны интенсивности света.

Фотоэффект в физике и его применение - формулы и определение с примерами

Александр Григорьевич Столетов (1839–1896) – русский физик. Исследовал внешний фотоэффект, открыл первый закон фотоэффекта. Исследовал газовый разряд, критическое состояние, получил кривую намагничивания железа.

Современная установка для исследования фотоэффекта

Современная установка для изучения фотоэффекта представляет собой два электрода, помещенных в стеклянный баллон, из которого выкачан воздух (рис. 210). На один из электродов через кварцевое «окошко» падает свет. В отличие от обычного стекла кварц пропускает ультрафиолетовое излучение. На электроды подается напряжение, которое можно менять с помощью потенциометра R и измерять вольтметром V. К освещаемому электроду К − катоду подсоединяют отрицательный полюс батареи. Под действием света катод испускает электроны, которые направляются электрическим полем к аноду, создается электрический ток. Значение силы тока фиксируется миллиамперметром.

Фотоэффект в физике и его применение - формулы и определение с примерами

Законы фотоэффекта Столетова

Исследования, проведенные русским ученым А.Г. Столетовым и немецким ученым Ф. Ленардом, показали, что законы фотоэффекта не соответствуют классическим представлениям.

На рисунке 211 представлена вольтамперная характеристика, полученная в результате измерений при различных значениях напряжения между электродами.

Фотоэффект в физике и его применение - формулы и определение с примерами

Из графика следует, что:

Фотоэффект в физике и его применение - формулы и определение с примерами

1. Сила фототока не зависит от напряжения, если оно достигает некоторого значения

Фотоэффект в физике и его применение - формулы и определение с примерами

Максимальное значение силы тока называют током насыщения.

Сила тока насыщения − это максимальный заряд, переносимый фотоэлектронами за единицу времени:

Фотоэффект в физике и его применение - формулы и определение с примерами

где n − число фотоэлектронов, вылетающих с поверхности освещаемого металла за 1 с, е − заряд электрона.

2. Сила фототока отлична от нуля при нулевом значении напряжения.

Фотоэффект в физике и его применение - формулы и определение с примерами

3. Если изменить направление электрического поля, соединив катод с положительным полюсом источника тока, а анод − с отрицательным, то скорость фотоэлектронов уменьшится, об этом можно судить по показаниям миллиамперметра: сила тока уменьшается при увеличении отрицательного значения напряжения. При некотором значении напряжения который называют задерживающим напряжением, фототок прекращается. Согласно теореме об изменении кинетической энергии, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:

Фотоэффект в физике и его применение - формулы и определение с примерами

Фотоэффект в физике и его применение - формулы и определение с примерами

При известном значении можно найти максимальную кинетическую энергию фотоэлектронов.

Исследование фотоэффекта при освещении катода световыми потоками равной частоты, но различной интенсивности дал результат, представленный вольтамперными характеристиками, изображенными на рисунке 212.

Фотоэффект в физике и его применение - формулы и определение с примерами

Сила фототока насыщения увеличивается с увеличением интенсивности падающего света.

Вспомните! Фотоэффект – это испускание электронов веществом под действием света или любого другого электромагнитного излучения.

Величина запирающего напряжения от интенсивности света не зависит, для всех потоков она имеет одно и то же значение.

Освещение катода светом одной и той же интенсивности, но разной частоты дало серию вольтамперных характеристик, представленных на рисунке 213. Как следует из графиков, величина задерживающего напряжения Фотоэффект в физике и его применение - формулы и определение с примерамиувеличивается с увеличением частоты падающего света, при уменьшении частоты падающего света уменьшается, и при некоторой частоте Фотоэффект в физике и его применение - формулы и определение с примерамизадерживающее напряжение равно нулю: Фотоэффект в физике и его применение - формулы и определение с примерамиПри меньших частотах Фотоэффект в физике и его применение - формулы и определение с примерамифотоэффект не наблюдается.

Фотоэффект в физике и его применение - формулы и определение с примерами

Минимальную частоту падающего света , при которой еще возможен фотоэффект, называют красной границей фотоэффекта.

Фотоэффект в физике и его применение - формулы и определение с примерами

На основании экспериментальных данных Столетовым были сформулированы законы фотоэффекта:

  1. Сила фототока прямо пропорциональна интенсивности светового потока.
  2. Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от интенсивности.
  3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света Фотоэффект в физике и его применение - формулы и определение с примерами(максимальная длина Фотоэффект в физике и его применение - формулы и определение с примерами), при которой возможен фотоэффект, если Фотоэффект в физике и его применение - формулы и определение с примерамито фотоэффект не происходит.
  • Заказать решение задач по физике

Квантовая теория фотоэффекта

Фотоэффект в физике и его применение - формулы и определение с примерами

Теоретическое обоснование фотоэффекта было дано в 1905 г. А. Эйнштейном. Он предположил, что свет не только излучается квантами, как утверждал М. Планк, но и распространяется и поглощается порциями, представляет собой поток частиц − фотонов, энергия которых равна

Фотоэффект в физике и его применение - формулы и определение с примерами

Сам фотоэффект состоит в том, что световые частицы, сталкиваясь с электронами металла, передают им свою энергию и импульс и сами при этом исчезают. Если энергия квантов падающего света больше той работы, которую электрон должен совершить против сил притяжения к положительно заряженным частицам вещества, то электрон вылетает из металла. Становится понятным смысл красной границы фотоэффекта: для вырывания электрона из металла энергия квантов должна быть не меньше, чем Эта энергия и равна работе выхода электрона из данного металла. В случае, когда энергия падающих квантов больше работы выхода, максимальная кинетическая энергия электронов равна разности энергии фотона и работы выхода:

Фотоэффект в физике и его применение - формулы и определение с примерами

Это и есть формула Эйнштейна для фотоэффекта. Обычно ее пишут в виде:

Фотоэффект в физике и его применение - формулы и определение с примерами

Зависимость силы фототока от интенсивности света Эйнштейн объяснил следующим образом: число вылетающих в единицу времени электронов пропорционально интенсивности света, поскольку интенсивность определяется числом квантов, испускаемых источником в единицу времени. Мощная лампа испускает больше квантов, следовательно, число вырванных электронов светом такой лампы будет больше, чем светом менее мощной лампы.

Энергия вылетающих электронов зависит не от силы света лампы, а от того, какой частоты свет она испускает, от этого зависит энергия фотона и кинетическая энергия фотоэлектрона.

Фотоны, энергия, масса и импульс фотона

Фотон – это частица света. Он не делится на части: испускается, отражается, преломляется и поглощается целым квантом. У него нет массы покоя, неподвижных фотонов не существует.

Энергия фотона

Фотоэффект в физике и его применение - формулы и определение с примерами

Фотоэффект в физике и его применение - формулы и определение с примерами− постоянная Планка, Фотоэффект в физике и его применение - формулы и определение с примерамициклическая частота.

Масса фотона

Массу фотона определяют, исходя из закона о взаимосвязи массы и энергии:

Фотоэффект в физике и его применение - формулы и определение с примерами

Измерить массу фотона невозможно, ее следует рассматривать как полевую массу, обусловленную тем, что электромагнитное поле обладает энергией.

Импульс фотона

Фотон – частица света, следовательно, ее импульс равен:

Фотоэффект в физике и его применение - формулы и определение с примерами

Применение фотоэффекта в технике

Фотоэлементы:

Приборы, принцип действия которых основан на явлении фотоэффекта, называют фотоэлементами. Устройство фотоэлемента изображено на рисунке 214. Внутренняя поверхность К (катод) стеклянного баллона, из которого выкачан воздух, покрыта светочувствительным слоем с небольшим прозрачным для света участком для доступа света внутрь баллона. В центре баллона находится металлическое кольцо А (анод). От электродов сделаны выводы для подключения фотоэлемента к электрической цепи. В качестве светочувствительного слоя обычно используют напыленные покрытия из щелочных металлов, имеющих малую работу выхода, т.е. чувствительных к видимому свету.

Фотоэлементы используют для автоматического управления электрическими цепями с помощью световых пучков.

Фотореле:

Фотоэлектрическое реле срабатывает при прерывании светового потока, падающего на фотоэлемент (рис. 215). Фотореле состоит из фотоэлемента Ф, усилителя фототока, в качестве которого используют полупроводниковый триод, и электромагнитного реле, включенного в цепь коллектора транзистора. Напряжение на фотоэлемент подают от источника тока Фотоэффект в физике и его применение - формулы и определение с примерамиа на транзистор − от источника тока Фотоэффект в физике и его применение - формулы и определение с примерамиМежду базой и эмиттером транзистора включен нагрузочный резистор R.

Когда фотоэлемент освещен, в его цепи, содержащей резистор R, идет слабый ток, потенциал базы транзистора выше потенциала эмиттера, и ток в коллекторной цепи транзистора отсутствует.

Если же поток света, падающий на фотоэлемент, прерывается, ток в его цепи сразу прекращается, переход эмиттер – база открывается для основных носителей, и через обмотку реле, включенного в цепь коллектора, пойдет ток. Реле срабатывает, и его контакты замыкают исполнительную цепь. Ее функциями могут быть остановка пресса, в зону действия которого попала рука человека, выдвигание преграды в турникете метро, автоматическое включение освещения на улицах.

Фотоэффект в физике и его применение - формулы и определение с примерами

Пример решения задачи

Определите постоянную Планка h, если известно, что электроны, вырываемые из металла светом с частотой Фотоэффект в физике и его применение - формулы и определение с примерамиГц, полностью задерживаются разностью потенциалов Фотоэффект в физике и его применение - формулы и определение с примерамиа вырываемые светом с частотой Фотоэффект в физике и его применение - формулы и определение с примерами− разностью потенциалов Фотоэффект в физике и его применение - формулы и определение с примерами

Дано:

Фотоэффект в физике и его применение - формулы и определение с примерами

Решение: Запишем уравнение Эйнштейна для электрона, вырванного из металла светом с частотами Фотоэффект в физике и его применение - формулы и определение с примерамисоответственно: Фотоэффект в физике и его применение - формулы и определение с примерамиВычитая первое равенство из второго, получим Фотоэффект в физике и его применение - формулы и определение с примерамиоткуда Фотоэффект в физике и его применение - формулы и определение с примерами

Фотоэффект в физике и его применение - формулы и определение с примерами

Выполним расчеты:

Ответ: h = 6,6 · 10 –34 Дж · с.

  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
  • Оптические явления в природе по физике
  • Оптические приборы в физике
  • Оптика в физике
  • Волновая оптика в физике
  • Разложение белого света на цвета и образование цветов
  • Давление света в физике
  • Химическое действие света
  • Корпускулярно-волновая природа света

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Запирающего напряжения для фотоэлектронов через длину волны

Запирающего напряжения для фотоэлектронов через длину волны

Задание 22. При исследовании зависимости кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещался через различные светофильтры. В первой серии опытов использовался светофильтр, пропускающий только фиолетовый свет, а во второй — только желтый.

Как изменяются длина световой волны и запирающее напряжение при переходе от первой серии опытов ко второй? Для каждой величины определите соответствующий характер ее изменения:

Из таблицы длин волн в зависимости от цвета видно, что для фиолетового цвета длина волны составляет нм, а для желтого нм. То есть при переходе ко второму опыту длина волны увеличивалась.

Запирающее напряжение при фотоэффекте определяется формулой

где — частота падающего света; — частота красной границы фотоэффекта. Так как длина волны увеличивается (тогда частота уменьшается), то запирающее напряжение также уменьшается.

Запирающего напряжения для фотоэлектронов через длину волны

При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй — жёлтый. В каждом опыте измеряли запирающее напряжение.

Для каждой физической величины определите соответствующий характер изменения.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе

Длина световой волны Запирающее напряжение Кинетическая энергия

Использование светофильтра позволяет вырезать из спектра определенный участок длин волн. Смена красного светофильтра на жёлтый приводит к снижению длины световой волны (так как длина волны красного излучения больше чем жёлтого).

Запирающее напряжение — это напряжение, при котором прекращается фототок. Величина запирающего напряжения для определённого фотокатода прямо пропорциональна частоте ν падающего света. А значит, при уменьшении длины волны частота увеличивается и увеличивается запирающее напряжение.

При фотоэффекте энергия падающего излучения расходуется на работу выхода электрона (которая постоянна для вещества, из которого выбиваются электроны) и остаток переходит в кинетическую энергию электрона: Энергия падающего излучения увеличивается при уменьшении длины волны, следовательно, кинетическая энергия фотоэлектронов также увеличивается

Запирающего напряжения для фотоэлектронов через длину волны

В опыте по изучению фотоэффекта фотоэлектроны тормозятся электрическим полем. При этом измеряется запирающее напряжение. В таблице представлены результаты исследования зависимости запирающего напряжения U, от длины волны λ падающего света.

Запирающее напряжение U, В 0,4 0,6
Длина волны света λ, нм 546 491

Чему равна постоянная Планка по результатам этого эксперимента? Запишите в ответ полученную величину, умноженную на 10 34 . Ответ округлите до десятых. Ответ приведите в джоуль-секундах.

Энергия падающих фотонов затрачивается на преодоление работы выхода и сообщение электронам кинетической энергии:

здесь — запирающее напряжение.

Рассмотрим два уравнения, соответствующие первому и второму опыту, и вычтем первое из второго:

Откуда Заметим, что частота и длина волны фотонов связаны уравнением: Получаем:

Приведено полное решение, включающее следующие элементы:

I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом;

II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);

III) представлены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);

Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены преобразования, направленные на решение задачи, но имеется один или несколько из следующих недостатков.

Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

Лекции по атомной физике — Фотоэффект

Определение

Определение: фотоэффект – это вырывание электронов из металла под действием падающего света.

Вырванные электроны называются «фотоэлектронами».

Законы фотоэффекта

а) Скорость фотоэлектронов не зависит от интенсивности падающего света.

б) Число фотоэлектронов пропорционально интенсивности падающего света.

U_ – задерживающее или запирающее напряжение.

Уравнение Эйнштейна для фотоэффекта

E_ – энергия падающего фотона, т.е. частицы света

\nu – частота падающего света

A_ – работа выхода электрона из металла, т.е. работа, которую необходимо совершить, чтобы вырвать электрон из вещества

Кинетическая энергия фотоэлектрона:

v_ – скорость фотоэлектрона;

Красная граница фотоэффекта

Минимальная частота, при которой возможен фотоэффект:

v_ – красная граница по частоте;

\lambda – длина волны света

Cвязь между частотой и длиной волны:

c – скорость света в вакууме

\lambda_ – красная граница по длине волны

Задерживающее напряжение

Определение: Задерживающее напряжение – это напряжение обратной полярности, при котором все электроны возвращаются назад на тот электрод, с которого были вырваны.

Это происходит, когда работа поля по возращению электронов становится равной кинетической энергии:

Подставим это выражение в уравнение Эйнштейна:

q_ – заряд носителя электричества;

v – скорость дрейфа, т.е. направленного движения частиц;

S – площадь поперечного сечения проводника

При увеличении частоты скорость фотоэлектронов растет \Rightarrow растет задерживающее напряжение.

При увеличении интенсивности света растет концентрация электронов \Rightarrow растет ток насыщения.

Энергия и импульс фотона

Замечание: Фотоны не имеют массы покоя. Рождаясь, они приобретают скорость c.

Корпускулярно-волновой дуализм

Определение: Корпускулярно-волновой дуализм – это двойственность свойств элементарных частиц: они одновременно обладают свойствами частиц и волн.

Длина волны де Бройля

Длину волны можно определить для любой частицы.

Запирающего напряжения для фотоэлектронов через длину волны

При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй — жёлтый. В каждом опыте измеряли запирающее напряжение. Как изменялись запирающее напряжение и кинетическая энергия фотоэлектронов?

Для каждой физической величины определите соответствующий характер изменения.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе

Запирающее напряжение Кинетическая энергия

Использование светофильтра позволяет вырезать из спектра определенный участок длин волн. Смена красного светофильтра на жёлтый приводит к снижению длины световой волны (так как длина волны красного излучения больше чем жёлтого).

Запирающее напряжение — это напряжение, при котором прекращается фототок. Величина запирающего напряжения для определённого фотокатода прямо пропорциональна частоте ν падающего света. А значит, при уменьшении длины волны частота увеличивается и увеличивается запирающее напряжение.

При фотоэффекте энергия падающего излучения расходуется на работу выхода электрона (которая постоянна для вещества, из которого выбиваются электроны) и остаток переходит в кинетическую энергию электрона: Энергия падающего излучения увеличивается при уменьшении длины волны, следовательно, кинетическая энергия фотоэлектронов также увеличивается

Уравнение Эйнштейна для фотоэффекта

Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от интенсивности света.

Законы Столетова для фотоэффекта

При положительном напряжении освещен катод

При отрицательном напряжении освещен анод

Запирающим напряжением Uз называется напряжение, при котором фотоэффект прекращается.

Запирающее напряжение Uз связано с максимальной кинетической энергией фотоэлектронов Ek(max) соотношением Ek(max) = Uзe

1. Сила фототока насыщения пропорциональна интенсивности света.

3. Для каждого вещества существует красная граница фотоэффекта, то есть наименьшая частота νmin, при которой возможен фотоэффект

Объяснение фотоэффекта проведено на основе квантовой гипотезы Планка

Энергия падающего фотона расходуется на преодоление работы выхода электрона из вещества и сообщение электронам кинетической энергии

Работа выхода электронов из металла равна минимальной энергии, которой должен обладать электрон для освобождения с поверхности вещества.

Существует внешний и внутренний фотоэффект .

1. Фотоэффект невозможен, если энергии падающего фотона недостаточно для преодоления работы выхода, hν

2. Если hνmin = Авых — порог фотоэффекта.

Частота и длина волны красной границы фотоэффекта:

Физика. 11 класс

Конспект урока

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения — некоторое предельное значение силы фототока.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

где Ав – работа выхода электронов;

νmin — частота излучения, соответствующая красной границе фотоэффекта;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где — максимальная кинетическая энергия электронов;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

2. Красная граница фотоэффекта для вещества фотокатода λ = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.