Запирающее напряжение фотоэффект от чего зависит
В начале XX века было установлено, что свет излучается и поглощается отдельными порциями – квантами . Энергия каждого кванта пропорциональна частоте излучения:
Фотоэффектом называется явление высвобождения электронов с поверхности тела под действием электромагнитного излучения.
Количественные закономерности фотоэффекта:
- Сила тока насыщения (фактически, число выбиваемых с поверхности электронов за единицу времени) прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела.
- Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.
- Если частота света меньше некоторой определенной для данного вещества минимальной частоты νкр, то фотоэффект не наблюдается (достигается т. н. красная граница фотоэффекта ).
Уравнение Эйнштейна для фотоэффекта:
где – работа выхода электронов из материала катода, а – максимальная кинетическая энергия фотоэлектронов.
Отсюда следует, что красная граница фотоэффекта определяется формулой Запирающее напряжение, которое необходимо приложить, чтобы фототок прекратился, можно найти по формуле:
Явление фотоэффекта экспериментально доказывает квантовую природу света.
Запирающее напряжение фотоэффект от чего зависит
При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй — жёлтый. В каждом опыте измеряли запирающее напряжение.
Для каждой физической величины определите соответствующий характер изменения.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе
Использование светофильтра позволяет вырезать из спектра определенный участок длин волн. Смена красного светофильтра на жёлтый приводит к снижению длины световой волны (так как длина волны красного излучения больше чем жёлтого).
Запирающее напряжение — это напряжение, при котором прекращается фототок. Величина запирающего напряжения для определённого фотокатода прямо пропорциональна частоте ν падающего света. А значит, при уменьшении длины волны частота увеличивается и увеличивается запирающее напряжение.
При фотоэффекте энергия падающего излучения расходуется на работу выхода электрона (которая постоянна для вещества, из которого выбиваются электроны) и остаток переходит в кинетическую энергию электрона: Энергия падающего излучения увеличивается при уменьшении длины волны, следовательно, кинетическая энергия фотоэлектронов также увеличивается
Уравнение Эйнштейна для фотоэффекта
Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от интенсивности света.
Законы Столетова для фотоэффекта
При положительном напряжении освещен катод
При отрицательном напряжении освещен анод
Запирающим напряжением Uз называется напряжение, при котором фотоэффект прекращается.
Запирающее напряжение Uз связано с максимальной кинетической энергией фотоэлектронов Ek(max) соотношением Ek(max) = Uзe
1. Сила фототока насыщения пропорциональна интенсивности света.
3. Для каждого вещества существует красная граница фотоэффекта, то есть наименьшая частота νmin, при которой возможен фотоэффект
Объяснение фотоэффекта проведено на основе квантовой гипотезы Планка
Энергия падающего фотона расходуется на преодоление работы выхода электрона из вещества и сообщение электронам кинетической энергии
Работа выхода электронов из металла равна минимальной энергии, которой должен обладать электрон для освобождения с поверхности вещества.
Существует внешний и внутренний фотоэффект .
1. Фотоэффект невозможен, если энергии падающего фотона недостаточно для преодоления работы выхода, hν
2. Если hνmin = Авых — порог фотоэффекта.
Частота и длина волны красной границы фотоэффекта:
Лекции по атомной физике — Фотоэффект
Определение
Определение: фотоэффект – это вырывание электронов из металла под действием падающего света.
Вырванные электроны называются «фотоэлектронами».
Законы фотоэффекта
а) Скорость фотоэлектронов не зависит от интенсивности падающего света.
б) Число фотоэлектронов пропорционально интенсивности падающего света.
U_ – задерживающее или запирающее напряжение.
Уравнение Эйнштейна для фотоэффекта
E_ – энергия падающего фотона, т.е. частицы света
\nu – частота падающего света
A_ – работа выхода электрона из металла, т.е. работа, которую необходимо совершить, чтобы вырвать электрон из вещества
Кинетическая энергия фотоэлектрона:
v_ – скорость фотоэлектрона;
Красная граница фотоэффекта
Минимальная частота, при которой возможен фотоэффект:
v_ – красная граница по частоте;
\lambda – длина волны света
Cвязь между частотой и длиной волны:
c – скорость света в вакууме
\lambda_ – красная граница по длине волны
Задерживающее напряжение
Определение: Задерживающее напряжение – это напряжение обратной полярности, при котором все электроны возвращаются назад на тот электрод, с которого были вырваны.
Это происходит, когда работа поля по возращению электронов становится равной кинетической энергии:
Подставим это выражение в уравнение Эйнштейна:
q_ – заряд носителя электричества;
v – скорость дрейфа, т.е. направленного движения частиц;
S – площадь поперечного сечения проводника
При увеличении частоты скорость фотоэлектронов растет \Rightarrow растет задерживающее напряжение.
При увеличении интенсивности света растет концентрация электронов \Rightarrow растет ток насыщения.
Энергия и импульс фотона
Замечание: Фотоны не имеют массы покоя. Рождаясь, они приобретают скорость c.
Корпускулярно-волновой дуализм
Определение: Корпускулярно-волновой дуализм – это двойственность свойств элементарных частиц: они одновременно обладают свойствами частиц и волн.
Длина волны де Бройля
Длину волны можно определить для любой частицы.
Физика. 11 класс
Конспект урока
Перечень вопросов, рассматриваемых на уроке:
- предмет и задачи квантовой физики;
- гипотеза М. Планка о квантах;
- опыты А.Г. Столетова;
- определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
- уравнение Эйнштейна для фотоэффекта;
- законы фотоэффекта.
Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.
Фотоэффект – это вырывание электронов из вещества под действием света.
Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.
Ток насыщения — некоторое предельное значение силы фототока.
Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.
Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.
Основная и дополнительная литература по теме урока:
1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.
2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.
3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.
4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.
Теоретический материал для самостоятельного изучения
В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.
Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.
Коэффициент пропорциональности получил название постоянной Планка, и она равна:
После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.
Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.
Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.
В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.
Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.
Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.
Схема установки для изучения законов фотоэффекта
Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.
Зависимость силы тока от приложенного напряжения
Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.
Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.
Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.
где Ав – работа выхода электронов;
νmin — частота излучения, соответствующая красной границе фотоэффекта;
λкр – длина волны, соответствующая красной границе.
Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.
Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.
Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.
Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:
где — максимальная кинетическая энергия электронов;
– задерживающее напряжение.
Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:
В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».
Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.
Примеры и разбор решения заданий
1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.
Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:
Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.
2. Красная граница фотоэффекта для вещества фотокатода λ = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.
Запишем уравнение для фотоэффекта через длину волны:
Условие связи красной границы фотоэффекта и работы выхода:
Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:
Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:
Подставляя численные значения, получаем: λ ≈ 215 нм.
Запирающее напряжение фотоэффекта зависимость
В начале XX века было установлено, что свет излучается и поглощается отдельными порциями – квантами . Энергия каждого кванта пропорциональна частоте излучения:
Фотоэффектом называется явление высвобождения электронов с поверхности тела под действием электромагнитного излучения.
Количественные закономерности фотоэффекта:
- Сила тока насыщения (фактически, число выбиваемых с поверхности электронов за единицу времени) прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела.
- Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.
- Если частота света меньше некоторой определенной для данного вещества минимальной частоты νкр, то фотоэффект не наблюдается (достигается т. н. красная граница фотоэффекта ).
Уравнение Эйнштейна для фотоэффекта:
где – работа выхода электронов из материала катода, а – максимальная кинетическая энергия фотоэлектронов.
Отсюда следует, что красная граница фотоэффекта определяется формулой Запирающее напряжение, которое необходимо приложить, чтобы фототок прекратился, можно найти по формуле:
Явление фотоэффекта экспериментально доказывает квантовую природу света.
Уравнение Эйнштейна для фотоэффекта
Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от интенсивности света.
Законы Столетова для фотоэффекта
При положительном напряжении освещен катод
При отрицательном напряжении освещен анод
Запирающим напряжением Uз называется напряжение, при котором фотоэффект прекращается.
Запирающее напряжение Uз связано с максимальной кинетической энергией фотоэлектронов Ek(max) соотношением Ek(max) = Uзe
1. Сила фототока насыщения пропорциональна интенсивности света.
3. Для каждого вещества существует красная граница фотоэффекта, то есть наименьшая частота νmin, при которой возможен фотоэффект
Объяснение фотоэффекта проведено на основе квантовой гипотезы Планка
Энергия падающего фотона расходуется на преодоление работы выхода электрона из вещества и сообщение электронам кинетической энергии
Работа выхода электронов из металла равна минимальной энергии, которой должен обладать электрон для освобождения с поверхности вещества.
Существует внешний и внутренний фотоэффект .
1. Фотоэффект невозможен, если энергии падающего фотона недостаточно для преодоления работы выхода, hν
2. Если hνmin = Авых — порог фотоэффекта.
Частота и длина волны красной границы фотоэффекта:
Лекции по атомной физике — Фотоэффект
Определение
Определение: фотоэффект – это вырывание электронов из металла под действием падающего света.
Вырванные электроны называются «фотоэлектронами».
Законы фотоэффекта
а) Скорость фотоэлектронов не зависит от интенсивности падающего света.
б) Число фотоэлектронов пропорционально интенсивности падающего света.
U_ – задерживающее или запирающее напряжение.
Уравнение Эйнштейна для фотоэффекта
E_ – энергия падающего фотона, т.е. частицы света
\nu – частота падающего света
A_ – работа выхода электрона из металла, т.е. работа, которую необходимо совершить, чтобы вырвать электрон из вещества
Кинетическая энергия фотоэлектрона:
v_ – скорость фотоэлектрона;
Красная граница фотоэффекта
Минимальная частота, при которой возможен фотоэффект:
v_ – красная граница по частоте;
\lambda – длина волны света
Cвязь между частотой и длиной волны:
c – скорость света в вакууме
\lambda_ – красная граница по длине волны
Задерживающее напряжение
Определение: Задерживающее напряжение – это напряжение обратной полярности, при котором все электроны возвращаются назад на тот электрод, с которого были вырваны.
Это происходит, когда работа поля по возращению электронов становится равной кинетической энергии:
Подставим это выражение в уравнение Эйнштейна:
q_ – заряд носителя электричества;
v – скорость дрейфа, т.е. направленного движения частиц;
S – площадь поперечного сечения проводника
При увеличении частоты скорость фотоэлектронов растет \Rightarrow растет задерживающее напряжение.
При увеличении интенсивности света растет концентрация электронов \Rightarrow растет ток насыщения.
Энергия и импульс фотона
Замечание: Фотоны не имеют массы покоя. Рождаясь, они приобретают скорость c.
Корпускулярно-волновой дуализм
Определение: Корпускулярно-волновой дуализм – это двойственность свойств элементарных частиц: они одновременно обладают свойствами частиц и волн.
Длина волны де Бройля
Длину волны можно определить для любой частицы.
48. Квантовая и ядерная физика Читать 0 мин.
48.219. Фотоэффект
Свет обладает двойственной природой: в некоторых случаях он ведет себя как волна, в других ― как частица. При фотоэффекте свет ведет себя как частица. «Порции» света (кванты) ― фотоны. Энергия одного фотона прямо пропорциональна его частоте и равна Ev = hv, где
h ― постоянная Планка, равная 6,6 ∙ 10-34 [Дж∙с];
Фотоэффект (фотоэлектрический эффект) ― испускание электронов веществом под действием света.
Свет поглощают электроны, свободно расположенные в металле. Поглотив квант света, электрон увеличивает свою энергию настолько, что может вылететь из металла. Таким образом, фотоны «выбивают» электроны из металла, если их энергия достаточно велика для этого. Электроны, вылетевшие под действием света (фотонов) называются фотоэлектронами. Поскольку ток ― это направленный поток заряженных частиц ― то при облучении металла светом достаточной энергии, создается ток, который называется фототоком.
Металлическая пластинка, подключенная к электрической цепи, и облучаемая светом, называется фотокатодом.
Энергия и скорость вылетающих электронов зависит от частоты падающего света ― т. е энергии фотона, который выбивает электрон. Скорость фотоэлектронов тем выше, чем выше частота фотонов. Аналогично, скорость фотоэлектронов тем меньше, чем меньше частота падающих фотонов.
Энергия и скорость вылетающих электронов от интенсивности света не зависят.
Дело в том, что интенсивность (яркость) света определяет не то, какую энергию имеют фотоны (напомним, что энергия фотонов зависит от их частоты), а то, сколько будет этих фотов в свете. Если свет яркий ― в нём находится много фотонов, если свет не яркий ― не много.
Теоретически фотоэффект объяснил Эйнштейн. Формула Эйнштейна для фотоэффекта связывает энергию падающих фотонов и энергию вылетающих электронов: hv = A + EК, где
h ― постоянная Планка, равная 6,6 ∙ 10-34 [Дж∙с];
EК ― кинетическая энергия фотона. [Дж].
Работа выхода фотоэффекта ― постоянная величина и зависит только от природы металла и состояния его поверхности. Работа выхода не зависит от частоты или интенсивности света.
Как видно из формулы Эйнштейна, энергия фотона идет на совершение работы выхода и на увеличение кинетической энергии электрона. Так как работа выхода постоянна, то при уменьшении частоты света ― уменьшается кинетическая энергия, а значит, и скорость вылетающих электронов. Если частота света уменьшается до предельной величины ― частоты красной границы фотоэффекта, скорость электронов становится равной нулю и фотоэффект прекращается. Если частота света меньше частоты красной границы фотоэффекта ― то фотоэффект не наблюдается, поскольку энергии фотонов недостаточно для того, чтобы выбить электрон из материала.
Красная граница фотоэффекта ― это частота, при которой прекращается фотоэффект. Ее можно определить из условия $hv_ > = A$ , где
h ― постоянная Планка, равная 6,6 ∙ 10-34 [Дж∙с];
vкрасная граница ― частота света [Гц];
График зависимости кинетической энергии вылетающих электронов от частоты падающих фотонов:
Запирающее напряжение ― это напряжение, не позволяющее электронам покинуть фотокатод. Если напряжение в цепи больше или равно запирающему напряжению, то электроны не могут достигнуть анода: даже если они покидают ненадолго фотокатод, сила электрического поля возвращает их в металл ― и фототока в цепи нет.
Запирающее напряжение определяется выражением eUзап = Eкинетическая, где
e ― заряд электрона равный 1,6 ∙ 10-19 [Кл];
Uзап ― запирающее напряжение [В];
Eкинетическая ― кинетическая энергия фотоэлектрона [Дж].
Когда напряжение в цепи равно нулю U = 0, а фотокатод облучается светом достаточной энергии, чтоб создавать фотоэффект, ― в сети есть ток, его вызывают выбиваемые светом электроны.
Когда напряжение в цепи равно запирающему напряжению U = Uз ― сила тока становится равной нулю, т. к. фототок прекращается.
Как видно из формулы, запирающее напряжение зависит только от кинетической энергии электронов, которая, в свою очередь, зависит от частоты света (но не интенсивности) и работы выхода.
Физика. 11 класс
Конспект урока
Перечень вопросов, рассматриваемых на уроке:
- предмет и задачи квантовой физики;
- гипотеза М. Планка о квантах;
- опыты А.Г. Столетова;
- определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
- уравнение Эйнштейна для фотоэффекта;
- законы фотоэффекта.
Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.
Фотоэффект – это вырывание электронов из вещества под действием света.
Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.
Ток насыщения — некоторое предельное значение силы фототока.
Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.
Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.
Основная и дополнительная литература по теме урока:
1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.
2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.
3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.
4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.
Теоретический материал для самостоятельного изучения
В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.
Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.
Коэффициент пропорциональности получил название постоянной Планка, и она равна:
После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.
Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.
Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.
В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.
Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.
Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.
Схема установки для изучения законов фотоэффекта
Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.
Зависимость силы тока от приложенного напряжения
Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.
Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.
Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.
где Ав – работа выхода электронов;
νmin — частота излучения, соответствующая красной границе фотоэффекта;
λкр – длина волны, соответствующая красной границе.
Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.
Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.
Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.
Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:
где — максимальная кинетическая энергия электронов;
– задерживающее напряжение.
Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:
В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».
Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.
Примеры и разбор решения заданий
1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.
Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:
Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.
2. Красная граница фотоэффекта для вещества фотокатода λ = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.
Запишем уравнение для фотоэффекта через длину волны:
Условие связи красной границы фотоэффекта и работы выхода:
Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:
Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:
Подставляя численные значения, получаем: λ ≈ 215 нм.
Как объяснить независимость запирающего напряжения от интенсивности света
Элементы квантовой механики. Корпускулярные свойства света при фотоэффекте
Страницы работы
Фрагмент текста работы
Меняя подаваемое на электроды напряжение U, проследим первую закономерность фотоэффекта — зависимость силы фототока от напряжения. Возрастание напряжения приводит к постепенному увеличению силы тока через фотоэлемент за счёт упорядочения движения выбитых электронов (рис. 3.3). Всё большее их число притягивается анодом. При некотором значении напряжения все выбиваемые светом электроны будут попадать на анод, и дальнейший рост напряжения уже не приведёт к увеличению тока. Он достигнет насыщения. На рис. 3.3 сила тока насыщения обозначена iн .
Если к устройству приложить поле противоположного направления, подключив к катоду плюс батареи, а к аноду — минус, то движение выбитых электронов будет тормозиться, и до анода дойдёт меньшее число электронов, чем при U = 0. Сила тока с ростом замедляющего напряжения будет уменьшаться, и когда даже самые быстрые электроны не смогут пробиться к аноду, станет равна нулю. В этом случае их кинетическая энергия вся пойдёт на работу против сил поля:
Здесь umax — наибольшая скорость выбитых электронов; Uз — запирающее напряжение, то есть наименьшее отрицательное напряжение, при котором ток фотоэлемента равен нулю. Иногда его называют задерживающим потенциалом.
Кривая зависимости фототока от напряжения носит название вольтамперной характеристики и имеет три характерных параметра: ток насыщения iн , нулевой ток i и запирающее напряжение Uз, которые изменяются при изменении интенсивности и частоты падающего света.
Изменение интенсивности света I при постоянстве его частоты легко осуществить, приближая или удаляя источник света. Сила фототока при этом будет меняться: чем бóльшую энергию принесёт свет, тем большее число электронов будет выбито с поверхности пластины. Измерения, впервые проведённые Столетовым, показали, что фототок возрастает с увеличением интенсивности, а сила тока насыщения прямо пропорциональна интенсивности света. Зависимость iн от интенсивности I упавшего на катод света представлена на рис. 3.4. Она выражает вторую из изучаемых закономерностей фотоэффекта.
Третья закономерность несколько сложнее. Увеличение интенсивности света приводит к возрастанию фототока во всем диапазоне напряжений, включая и замедляющее поле. На рис. 3.3 вольтамперная характеристика, снятая при бόльшей интенсивности света, показана пунктиром. Но, как показали точные измерения Ф. Ленарда, увеличение интенсивности падающего света не влияет на величину запирающего напряжения, т.е. электроны покидают металл с прежней скоростью. Независимость запирающего напряжения от интенсивности света и есть третья закономерность фотоэффекта.
С позиций максвелловской теории, оправдавшей себя в многочисленных опытах, интенсивность света определяется квадратами напряжённостей электрического и магнитного полей, принесённых светом. Согласно закону сохранения энергии, именно за счёт поглощения энергии волны электрон вырывается из металла, преодолевая удерживающие его там силы, и приобретает кинетическую энергию. Обозначив поглощённую электроном энергию W1, получим
Читайте также: Что такое напряжение нулевой точки
Через А в этом равенстве обозначена работа выхода электрона, которая зависит не только от металла, но и от подложки, на которую он нанесён. У чистых металлов работа выхода от 2 до 5 эВ.
Увеличение энергии W упавшей на вещество волны должно привести не только к увеличению числа выбитых электронов (возрастанию тока), но и, согласно (3.2), к увеличению их кинетической энергии, а значит и запирающего напряжения Uз . Наблюдающееся в опыте постоянство Uз с изменением интенсивности света совершенно непонятно с точки зрения электромагнитной теории Максвелла. Представления о свете как об электромагнитной волне позволяют, таким образом, объяснить первую и вторую закономерности фотоэффекта, но вызывают затруднения в объяснении третьей закономерности.
Опыты Столетова также показали, что изменение частоты света (при неизменной, разумеется, интенсивности) не влияет на величину фототока. Но при достижении некоторой граничной частоты n , которая имеет различные значения для разных металлов, фототок вообще прекращался, т. е. электроны не выходили из металла даже при очень ярком освещении (рис. 3.5). Наличие граничной частоты (красной границы фотоэффекта l = с/n ) — четвёртая закономерность фотоэффекта.
Опыты также показали, что изменение частоты света влияет на запирающее напряжение. Чем больше частота, тем больше Uз . Экспериментальная зависимость запирающего напряжения от частоты
Как объяснить независимость запирающего напряжения от интенсивности света
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.
Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.
В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны . При неизменном световом потоке снималась зависимость силы фототока от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.
Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает . Если напряжение на аноде меньше, чем –, фототок прекращается. Измеряя , можно определить максимальную кинетическую энергию фотоэлектронов:
Читайте также: Напряжение для работы жесткого диска
К удивлению ученых, величина оказалась независящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты света (рис. 5.2.3).
Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:
Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от его интенсивности.
Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота , при которой еще возможен внешний фотоэффект.
Число фотоэлектронов, вырываемых светом из катода за , прямо пропорционально интенсивности света.
Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света .
Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.
Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.
Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой , где – постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:
Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .
С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.
Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала от частоты (рис. 5.2.3), равен отношению постоянной Планка к заряду электрона :
Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены в 1914 г. Р. Милликеном и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода :
где – скорость света, – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода составляет несколько электрон-вольт (). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно
Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия , что соответствует красной границе фотоэффекта . Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.
Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .
Фотон движется в вакууме со скоростью . Фотон не имеет массы, . Из общего соотношения специальной теории относительности, связывающего энергию, импульс и массу любой частицы,
следует, что фотон обладает импульсом
Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.
Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма . Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.
- Напряжение
- Реле
- Трансформатор
- Что такое рекуперация на электровозе
- Чем отличается электровоз от тепловоза
- Чем глушитель отличается от резонатора
- Стойки стабилизатора как определить неисправность
- Стабилизатор поперечной устойчивости как работает