Защита оборудования от импульсных перенапряжений и коммутационных помех
На написание данного текста меня сподвигло ощущение незнания многими принципов работы, использования (или даже незнание о существовании) параллельной защиты от импульсных перенапряжений в сети, в том числе и вызванных разрядами молний
Импульсные помехи в сети довольно распространены, они могут возникать во время грозы, при включении/выключении мощных нагрузок (поскольку сеть это RLC цепь, то в ней при этом возникают колебания, вызывающие выбросы напряжения) и многие другие факторы. В слаботочных, в том числе цифровых цепях, это еще более актуально, поскольку коммутационные помехи достаточно хорошо проникают через источники питания (больше всего защищенными являются Обратноходовые преобразователи — в них энергия трансформатора передается на нагрузку, когда первичная обмотка отключена от сети).
В Европе уже давно де-факто практически обязательна установка модулей защиты от импульсных перенапряжений (далее буду, для простоты, называть грозозащитой или УЗИП), хотя сети у них получше наших, а грозовых областей меньше.
Особо актуальна стало применение УЗИП последние 20 лет, когда ученые стали разрабатывать все больше вариантов полевых MOSFET транзисторов, которые очень боятся превышения обратного напряжения. А такие транзисторы используются практически во всех импульсных источниках питания до 1 кВА, в качестве ключей на первичной (сетевой) стороне.
Другой аспект применения УЗИП — обеспечение ограничения напряжения между нейтральным и земляным проводником. Перенапряжение на нейтральном проводнике в сети может возникать, например, при переключении Автомата ввода резерва с разделенной нейтралью. Во время переключения, нейтальный проводник окажется «в воздухе» и на нем может быть что угодно.
Характеристики импульсов перенапряжения
Импульсы перенапряжений в сети характеризуются формой волны и амплитудой тока. Форма импульса тока характеризуется временем его нарастания и спада — для европейских стандартов это импульсы 10/350 мкс и 8/20 мкс. В России, как это случается часто в последнее время, переняли стандарты Европы и появился ГОСТ Р 51992-2002. Числа в обозначении формы импульса означают следующее:
— первая — время (в микросекундах) нарастания импульса тока с 10% до 90% от максимального значения тока;
— вторая — время (в микросекундах) спада импульса тока до 50% от максимального значения тока;
Защитные устройства делятся на классы в зависимости от мощности импульса, который они могут рассеять:
1) Класс 0 (А) — внешняя грозозащита (в данном посте не рассматриваем);
2) Класс I (B) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 25 до 100 кА формой волны 10/350 мкс (защита в вводно-распределительных щитах здания);
3) Класс II ( C) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 10 до 40 кА формой волны 8/20 мкс (защита в этажных щитах, электрощитах помещений, вводах электропитающего оборудования);
3) Класс III (D) — защита от перенапряжений, характеризующихся импульсными токами амплитудой до 10 кА формой волны 8/20 мкс (в большинстве случаев защита встроена в оборудование — если оно изготовлено в соответствии с ГОСТ);
Приборы защиты от импульсных перенапряжений
Основными двумя приборами УЗИП являются разрядники и варисторы различной конструкции.
Разрядник
Разрядник — электрический прибор открытого (воздушного) или закрытого (наполненного инертными газами) типа, содержащий в простейшем случае два электрода. При превышении напряжения на электродах разрядника определенного значения, он «пробивается», тем самым ограничивая напряжение на электродах на определенном уровне. При пробое разрядника по нему протекает значительный ток (от сотен Ампер до десятков килоАмпер) за короткое время (до сотен микросекунд). После снятия импульса перенапряжения, если не была превышена мощность, которую способен рассеять разрядник — он переходит в исходное закрытое состояние до следующего импульса.
Основные характеристики разрядников:
1) Класс защиты (см. выше);
2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение разрядника;
3) Максимальное рабочее переменное напряжение — предельное длительное напряжение разрядника, при котором он гарантированно не сработает;
4) Максимальный импульсный разрядный ток (10/350) мкс — максимальное значение амплитуды тока с формой волны (10/350) мкс, при котором разрядник не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором разрядник обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения — максимальное напряжение на электродах разрядника при его пробое из-за возникновения импульса перенапряжения;
7) Время срабатывания — время открывания разрядника (практически для всех разрядников — менее 100 нс);
8) (редко указываемый производителями параметр) статическое напряжение пробоя разрядника — статическое напряжение (медленно изменяемое во времени), при котором произойдет открытие разрядника. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 20-30% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
Выбор разрядника достаточно творческий процесс с многочисленными «плевками в потолок» — ведь мы заранее не знаем значение тока, который возникнет в сети.
При выборе разрядника можно руководствоваться следующими правилами:
1) При установке защиты в вводных щитах от воздушной линии электропередач или в областях, где частые грозы, устанавливать разрядники с максимальным разрядным током (10/350) мкс не менее 35 кА;
2) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, разрядник откроется и выйдет из строя от перегрева);
3) Выбирать разрядники с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 и 2). Обычно напряжение ограничения разрядников класса I от 2,5 до 5 кВ;
4) Между проводниками N и PE устанавливать разрядники, специально для этого предназначенные (производители указывают что они для подключения к N-PE проводникам). Кроме того, эти разрядники характеризуются более низкими рабочими напряжениями, обычно порядка 250 В переменного тока (между нейтралью и землей в нормальном режиме вообще напряжение отсутствует) и большим разрядным током — от 50 кА до 100 кА и выше.
5) Подключать разрядники к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины. Например, при возникновении в проводнике длиной 2 мера сечением 4 мм2 тока 40 кА, на нем упадет (в идеальном случае без учена индуктивности — а она тут играет большую роль) около 350 В. Если таким проводником подключен разрядник, то в точке подключения к сети напряжение ограничения будет равным сумме напряжения ограничения разрядника и падения напряжения на проводнике при импульсном токе (наши 350 В). Таким образом, значительно ухудшаются защитные свойства.
6) По возможности устанавливать разрядники перед вводным автоматическим выключателем и обязательно перед УЗО (при этом необходимо последовательно с разрядником установить предохранитель с характеристикой gL на ток 80-125 А, для обеспечения отключения разрядника от сети при выходе его из строя). Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 80А с характеристикой срабатывания D. Это снизит вероятность ложного срабатывания автомата при срабатывании разрядника. Установка УЗИП перед УЗО обусловлена низкой стойкостью УЗО к импульсным токам, кроме того, при срабатывании разрядника N-PE, УЗО будет ложно срабатывать. Также, желательно УЗИП устанавливать перед счетчиками электроэнергии (что опять же, энергетики не позволят сделать)
Варистор
Варистор — полупроводниковый прибор с «крутой» симметричной вольт-амперной характеристикой.
В исходном состоянии варистор имеет высокое внутреннее сопротивление (от сотен кОм до десятков и сотен МОм). При достижении напряжения на контактах варистора определенного уровня, он резко снижает свое сопротивление и начинает проводить значительный ток, при этом напряжение на контактах варистора изменяется незначительно. Как и разрядник, варистор способен поглотить энергию импульса перенапряжения длительностью до сотен микросекунд. Но при длительном повышенном напряжении, варистор выходит из строя с выделением большого количества тепла (взрывается).
Все варисторы в исполнении на DIN-рейку оснащены тепловой защитой, предназначенной для отключения варистора от сети при его недопустимом перегреве (при этом по локальной механической индикации можно определить, что варистор вышел из строя).
На фото варисторы с встроенным тепловым реле после превышения рабочего напряжения разных значений. При значительном перенапряжении такая встроенная тепловая защита практически не эффективна — варисторы взрываются так, что уши закладывает. Однако, встроенная тепловая защита в варисторных модулях на DIN-рейку достаточно эффективна при любых длительных перенапряжениях, и успевает отключить варистор от сети
Небольшое видео натуралистических испытаний 🙂 (подача на варистор диаметром 20 мм повышенного напряжения — превышение на 50 В)
Основные характеристики варисторов:
1) Класс защиты (см. выше). Обычно варисторы имеют класс защиты II ( C), III (D);
2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение варистора;
3) Максимальное рабочее переменное напряжение — предельное длительное напряжение варистора, при котором он гарантированно не откроется;
4) Максимальный импульсный разрядный ток (8/20) мкс — максимальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения — максимальное напряжение на варисторе при его открытии из-за возникновения импульса перенапряжения;
7) Время срабатывания — время открывания варистора (практически для всех варисторов — менее 25 нс);
8) (редко указываемый производителями параметр) классификационное напряжение варистора — статическое напряжение (медленно изменяемое во времени), при котором ток утечки варистора достигает значения 1 мА. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 15-20% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
9) (очень редко указываемый производителями параметр) допустимая погрешность параметров варистора — практически для всех варисторов ±10%. Эту погрешность следует учитывать при выборе максимального рабочего напряжения варистора.
Выбор варисторов также как и разрядников сопряжен с трудностями, связанными с неизвестностью условий их работы.
При выборе варисторной защиты можно руководствоваться следующими правилами:
1) Варисторы устанавливаются как вторая-третья ступень защиты от импульсных перенапряжений;
2) При использовании варисторной защиты II класса совместно с защитой I класса, необходимо учитывать разную скорость срабатывания варисторов и разрядников. Поскольку разрядники медленнее варисторов, если УЗИП не согласовать, варисторы будут принимать на себя бОльшую часть импульса перенапряжения и быстро выйдут из строя. Для согласования I и II классов грозозащиты применяются специальные согласующие дроссели (производители УЗИ имеют их ассортимент для таких случаев), либо длина кабеля между УЗИП I и II классов должна быть не менее 10 метров. Недостатком такого решение является необходимость вреза дросселей в сеть или ее удлинение, что увеличивает ее индуктивную составляющую. Единственным исключением является немецкий производитель PhoenixContact, который разработал специальные разрядники I класса с так называемым «электронным поджигом», которые «согласованы» с варисторными модулями этого же производителя. Эти комбинации УЗИП можно устанавливать без дополнительного согласования;
3) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, варистор откроется и выйдет из строя от перегрева). Но тут нельзя перебарщивать, поскольку напряжение ограничения варистора напрямую зависит от классификационного (а следовательно, от максимального рабочего напряжения). Примером неудачного выбора максимального рабочего напряжения являются варисторные модули ИЭК с максимальным длительным напряжением 440 В. Если их устанавливать в сеть с номинальным напряжением 220 В, то работа его будет крайне неэффективна. Кроме того, следует учитывать, что варисторы имеют тенденцию к «старению» (т.е. со временем, при многих срабатываниях варистора, его классификационное напряжение начинает снижаться). Оптимальным для России будет применение варисторов длительным рабочим напряжением от 320 до 350 В;
4) Выбирать нужно с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 — 3). Обычно напряжение ограничения варисторов класса II для сетевого напряжения от 900 В до 2,5 кВ;
5) Не соединять параллельно варисторы для увеличения суммарной рассеиваемой мощности. Многие производители защит УЗИП (особенно класса III (D)) грешат параллельным соединением варисторов. Но, поскольку 100% одинаковых варисторов не существует (даже из одной партии они разные), всегда один из варисторов окажется самым слабым звеном и выйдет из строя при импульсе перенапряжения. При последующих же импульсах выйдут из строя цепочной остальные варисторы, поскольку они уже не будет обеспечивать требуемую мощность рассеяния (это тоже самое что соединять параллельно диоды для увеличения общего тока — так делать нельзя)
6) Подключать варисторы к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины (рассуждения те же, что и для разрядников).
7) По возможности устанавливать варисторы перед вводным автоматическим выключателем и обязательно перед УЗО. Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 50А с характеристикой срабатывания D (для варисторов II класса). Это снизит вероятность ложного срабатывания автомата при срабатывании варистора.
Краткий обзор производителей УЗИП
Ведущими производителями, специализирующимися на УЗИП низковольтных сетей являются: Phoenix Contact; Dehn; OBO Bettermann; CITEL; Hakel. Также у многих производителей низковольтной аппаратуры, в продукции имеются модули УЗИП (ABB, Schneider Electric и др.). Кроме того, китай успешно копирует УЗИП мировых производителей (поскольку Варистор достаточно простой прибор, китайские производители изготавливают довольно качественную продукцию — например модули TYCOTIU).
Кроме того, на рынке довольно много готовых щитков защиты от импульсных перенапряжения, включающих в себя модули одного или двух классов защиты, а также предохранители для обеспечения безопасности, в случае выхода из строя защитных элементов. В этом случае, щиток закрепляется на стене и подключается к имеющейся электропроводке в соответствии с рекомендациями производителя.
Стоимость УЗИП разнится в зависимости от производителя в разы. В свое время (несколько лет назад), мною был проведен анализ рынка и выбран ряд производителей II класса защиты (некоторые в список не попали, в связи с отсутствием исполнений модулей на требуемое длительное рабочее напряжения 320 В или 350 В).
Как замечание по качеству, могу выделить только модули HAKEL (например PIIIMT 280 DS) — они имеют слабые контактные соединения вставок и изготовлены из горючего пластика, что запрещено ГОСТ Р 51992-2002. На данный момент HAKEL обновили ряд продукции — о ней ничего сказать не могу, т.к. не буду использовать HAKEL больше никогда
Применение УЗИП класса III (D) и защиту цифровых цепей устройств оставим на потом.
В заключение могу сказать, если после прочтения всего у вас появилось больше вопросов, чем после прочтения заголовка — это хорошо, поскольку тема заинтересовала, а она настолько необъятная, что можно не одну книгу написать.
- грозозащита
- УЗИП
- защита от перенапряжения
УЗИП для частного дома – что это такое, разновидности, правила выбора, особенности монтажа
Нередко причиной порчи электропроводки, бытовой техники и оборудования становится резкий скачет напряжения в сети. Самый простой и надежный способ защиты от такого рода событий является установка специального УЗИП для частного дома. Разберем, что собой представляет такое устройство, как оно действует и в чем его назначение, какие его разновидности существуют, почему может происходить скачки напряжения в сети, как правильно выбрать прибор для собственного жилья, а также в чем заключаются основные особенности его установки.
УЗИП – что это такое, принцип действия, назначение
Несмотря на заверения поставщиков электроэнергии о надежности и стабильности характеристик подаваемого электрического тока, скачки напряжения в десятки, а то и сотни вольт – довольно частое явление. Последствия могут быть самыми разными – от обесточивания домашней электросети до порчи дорогостоящего оборудования и пожара.
Единственно верный способ оградить свое жилище от такого рода негативных процессов – установить на входе в домашнюю электросеть устройство защиты от импульсных перенапряжений, иначе называемое УЗИП-ом. Принцип действия прибора основан на снижении величины импульсного напряжения до приемлемого значения – того, на которые и рассчитана безопасная работа электроприборов, установленных в доме. Возникающий избыточный ток просто уходит в грунт через заземляющий контур. Некоторые модели дополнительно обесточивают всю внутреннюю сеть.
Существующие модели имеют разный рабочий ресурс – одни требуется заменять сразу после первого срабатывания, другие можно перезапускать до 10-20 раз. При этом работоспособность устройства внешне определяется специальной индикацией. Зеленый означает пригодность для дальнейшей эксплуатации, красный – необходимость замены.
Приборы для защиты от перенапряжений подразделяется на 3 класса:
- 1-го класса устанавливается на главном вводном щитке. Именно он берет на себя основную нагрузку.
- 2-го класса монтируется в местном распредщитке. Берет на себя остаток импульса.
- 3-го класса располагается в цепи непосредственно перед конкретным оборудованием.
При этом согласно требованиям, монтаж УЗИП разных классов должен осуществляться так, чтобы по электросхеме между ними сохранялось минимальное расстояние – 10 м по длине проводки.
Важно! Защиту электросети дома от небольших скачков обеспечивает реле напряжения. Однако уберечь оборудование от импульсов в несколько сотен, а то и тысяч вольт, которое случае при разряде молнии, оно не способно. Справиться с такой задачей может только УЗИП.
Причины перенапряжения
Импульсный перепад напряжения в сети представляет собой молниеносное повышение напряжения от нескольких десятков до тысяч вольт. Длиться такое событие может всего несколько миллисекунд. Однако этого вполне достаточно, чтобы все подключенные приборы и электропроводка сгорели и с высокой вероятностью привели к возгоранию.
Причин перенапряжения может быть несколько:
- Разряд молнии. Является наиболее опасным с точки зрения последствий, так как скачок напряжения может достигать нескольких киловольт. При этом молнии необязательно бить точно по фазовому проводу, а достаточно ударить в нескольких метрах от него, чтобы в проводнике возник мощный импульс. Единственный способ предостережения от такого стихийного фактора – это прибор защиты от импульсных перенапряжений, установленный на вводе в дом.
- Повреждение нулевого провода. Событие может произойти в силу различных причин – отгорания контакта, обрыва провода на ЛЭП из-за ветра или повала дерева и проч. В любом случае вместо привычных 220 В потребитель получит 380 вольт или более со всеми вытекающими последствиями.
- Ошибки при подключении после проведения ремонтно-восстановительных электромонтажных работ.
- Возникновение избыточной нагрузки из-за подключения мощного оборудования, одновременного включения многих потребителей или проведения сварочных работ на соседних участках.
- Неграмотное соединение контактов в элеткрощитке.
Возникновение хотя бы одного из выше перечисленных событий неизбежно приведут к поломке бытовой техники или возгоранию окружающих материалов. Другой прямо противоположной ситуацией является резкое падение напряжения. От этого в большей степени страдает оборудование, особенно оснащенное автоматикой.
Например, современные котлы при возникновения подобного сбоя сразу же останавливаются и выдают ошибку. Поэтому для устранения таких последствий агрегат подключают через стабилизатор тока, вовремя улавливающий изменения и выравнивающий напряжение до номинального значения.
На заметку! Для домашнего оборудования, работающего от сети 220 В, требуется защита не только от большого перенапряжения, но незначительных. Поэтому электроцепь желательно оснастить различными сетевыми фильтрами, стабилизаторами и реле напряжения, это особенно актуально для чувствительного к малейшим перепадам оборудования. Однако одних их не будет достаточно – без УЗИП при возникновении мощного импульса все они сгорят вместе с техникой.
Разновидности
Для того чтобы защитить домашнюю электросеть от любого рода перенапряжений, в том числе импульсного, применяется следующие разновидности приборов:
Прибор, прежде всего, защищает от высоких скачков напряжения, таких, как, например, во время разряда молнии. При этом существует следующие варианты установки:
- Внутри вводного щита. Устанавливается совместно с молниезащитой дома. Является наиболее надежной. В случае попадания молнии в дом устройство сработает, как автомат и защитит всю технику дома. Также допускается вариант без молниеотвода. Но тогда потребуется устанавливать несколько разноклассных УЗИП – один на опоре ЛЭП, другой на столбе рядом с домом и еще одни на самом щитке дома.
- На столбе. Для защиты от наведенных токов применяется прибор 1-го класса. А если расстояние до столба 60 и более метров, то в водный распредщиток дома обязательно требуется установка устройства 2-го класса.
Если же подача тока осуществляется через подземный кабель, а молниезащита отсутствует, достаточно установить устройство защиты от импульсных перенапряжений 2-го класса на вводный щиток дома.
- Нелинейные ограничители напряжения.
Принцип действия устройства основан на входящих в их состав нелинейных варисторах. Когда величина напряжения превышает рамки допустимого значения, его сопротивление падает, что ведет к свободному уходу тока в подсоединенный контур заземления.
При номинальном токе величина сопротивления большая, и потому ток не проходит в заземляющую жилу. Нелинейные ограничители могут устанавливаться как на опорах электропередач, так и непосредственно в щитках дома. Во втором случае это специальные компактные модули.
Как вариант защиты высокочувствительного оборудования может применяться сетевой фильтр. Устанавливается в цепи непосредственно перед конкретным потребителем. Главный недостаток – весьма низкий порог ограничений. Так, если в сети произойдет скачок в 450 В и выше, прибор просто сгорит. Однако оборудование при этом сохранится в целости.
Основной плюс заключается не только в том, что он защищает от перенапряжения, но и выравнивает характеристики тока, то есть фильтрует высокочастотные помехи, возникающие, например, при электросварке. Поэтому его можно рекомендовать к установке перед компьютерами, телевизорами и прочей подобной техникой.
Основная функция – стабилизация характеристик тока и доведение его до номинального значения. Кроме того, при выходе показателей напряжения выше допустимого устройство отключает подачу тока. Возобновление происходит только тогда, когда характеристики сети возвращаются в норму.
Обратите внимание! Все приборы защиты, предназначенные для бытового использования, подразделяются на 2 вида – магистральные и линейные. Первые устанавливаются на общем вводе в дом, вторые – на конкретный прибор или группу.
Правила выбора
При выборе прибора защиты от импульсных перенапряжений для частного дома необходимо руководствоваться следующими критериями:
- Количество фаз в сети. От этого будет зависеть число вводных контактов.
- Класс, задающий место в электросхеме.
- Место установки – на улице или в помещении.
- Степень доступности для обслуживания непрофессиональному пользователю.
- Способ монтажа – с возможностью переноса или для неподвижной установки.
- Наличие функций защиты – тепловая, ток утечки, сверхток.
- Защита от внешних факторов – температуры и влажности.
- Температура окружающей среды для эксплуатации – для уличной или внутренней установки.
- Тип системы заземления.
Справка! Если УЗИП не исключает возможность обслуживания неквалифицированным пользователем, например, когда устанавливается в щитке дома, а не на столбе, оно не должно включать токоведущие части без защитной оболочки, доступные после снятия деталей без использования инструмента.
Видео описание
Видео-обзор о том, что такое УЗИП, как правильно его выбрать для дома и подключить:
Особенности монтажа
Для монтажа УЗИП в частном доме необходимо соблюсти 2 основных условия:
- Наличие системы заземления. При этом от его типа будет зависеть разновидность самого устройства.
- Наличие автомата, отключающего УЗИП при срабатывании, для обеспечения бесперебойности электроснабжения дома.
При этом прибор защиты от перенапряжений в электроцепи частного дома должен монтироваться по следующей схеме:
- На вводе устанавливается автоматический выключатель для защиты счетчика и внутренней цепи щитка.
- Между прибором учета и автоматом располагается УЗИП с собственной защитой.
- Далее по схеме идет счетчик.
Полезно знать! Самыми распространенными ошибками, снижающими функциональность УЗИП или делающие его бесполезным, являются – плохой заземляющий контур, не соответствие устройства типу заземления и применение прибора класса, не соответствующего месту в схеме.
Видео описание
Видео о том, как правильно расположить УЗИП в щитке:
Коротко о главном
Устройство защиты от импульсных перенапряжений защищает электросистему дома от скачков напряжения. Возникающий при этом ток большого номинала отводится в контур заземления, не причиняя домашнему оборудования вреда. В зависимости от места в схеме УЗИП подразделяется на 3 класса.
Наиболее частыми причинами перенапряжения сети становятся:
- Разряд молнии.
- Ошибки электромонтажников.
- Повреждение нейтрального провода.
- Неправильные соединения в электрощитке дома.
Существует 4-ре основные разновидности бытовых приборов защиты от перенапряжения – УЗИП, стабилизатор, сетевой фильтр и нелинейные ограничители тока. При выборе УЗИП необходимо прежде всего учитывать его технические характеристики. Монтаж устройства допустим при соблюдении двух условий – наличия заземления и собственного автомата. В схеме прибор должен располагаться между вводным автоматом и счетчиком.
Способы защиты электроприборов от высокого напряжения в электросети
Потребители электроэнергии либо периодически сталкиваются, либо могут рано или поздно столкнуться с ситуацией, в которой значение фактически получаемого из сети напряжения оказывается выше, чем установленный для него номинал. «Лишние вольты» не заслуживают легкомысленного отношения, так как, во-первых, губительно влияют на электрооборудование, а, во-вторых, могут представлять угрозу для жизни и здоровья человека. Поговорим о причинах их появления, а также рассмотрим способы защиты электроприборов от высокого напряжения в электросети.
Электроэнергия в России. Нормативы и реальность
Сетевые параметры в нашей стране регулируются ГОСТами, которые на 2021 год устанавливают величину номинального напряжения в однофазной/трёхфазной сети в 230/400 В с допустимым отклонением ±10% (привычные многим 220/380 В не потеряли своей актуальности и по-прежнему допустимы к применению, однако строительство новых подстанций и реконструкция старых осуществляется под стандарт 230 В). К сожалению, на практике вышеприведённые требования выдерживаются далеко не всегда: в сетях встречаются и хронические отклонения, и резкие колебания с размахом большим разрешённых 10%. Отметим, что среди ситуаций, в которых фактическое напряжение оказывается выше номинального, более распространены кратковременные скачки с последующим возвратом к норме. Длительно (хронически) повышенное напряжение не исключено, но встречается не столь часто, особенно по сравнению с обратной ситуацией – длительно пониженным напряжением.
Причины высокого сетевого напряжения
- действия энергоснабжающей организации – иногда энергетики сознательно завышают параметры подаваемой в сеть электроэнергии. Делается это для обеспечения приемлемым напряжением максимального числа потребителей. Дело в том, что неизбежные потери на линии нейтрализуют «лишние вольты» и на большинстве участков энергосистемы в итоге устанавливаются нормальные сетевые показатели. Однако в некоторых точках, в частности в непосредственной близости от подстанции, фактическое значение напряжения всё же будет превышать его номинальную величину.
- перекос фаз – неравномерное распределение нагрузки между фазами в трёхфазной сети приводит к увеличению напряжения на наименее загруженной фазе. На практике к такой проблемной фазе могут быть подключены квартира или целый подъезд в многоэтажном доме, либо отдельное строение (коттедж, дача) в частном секторе.
У кратковременных скачков напряжения поводов больше:
- аварии во внешней сети или в проводке, проложенной непосредственно у потребителя – происходят по десяткам причин, среди которых общий износ инфраструктуры, применение некачественных материалов и электроустановочных изделий при монтаже питающих линий, человеческий фактор (ошибка электрика, вандализм), природные явления (удар молнии, ледяной дождь, ураган);
- сброс части нагрузки – отключение мощного потребителя (группы мощных потребителей) может вызвать непродолжительное, но достаточно сильное сетевое колебание;
- перекос фаз – как из-за асимметрии нагрузок (более сильной, чем при хронически повышенном напряжении), так и из-за проблем с нулевым проводником, обрыв которого провоцирует молниеносный бросок напряжения до критической величины;
- коммутационные процессы – изменения состояния энергосистемы (переход на другой режим работы, включение/отключение дополнительных сегментов и т.д.), часто сопровождаются вбросом в сеть высоковольтного импульса.
Влияние высокого сетевого напряжения на электрооборудование
Начнём с того, что для части электроприборов нежелательны сетевые колебания даже в разрешённых ГОСТом пределах. Возможно, они и не вызовут их немедленной поломки, но точно приведут к сбоям в работе. Примером является современный газовый котёл – его электроника может «уйти в ошибку» при минимальном превышении параметрами электропитания установленного номинала.
Вред, наносимый более серьёзным ростом напряжения (свыше 10%), прямо пропорционален величине фактического отклонения от нормы, и, кроме того, зависит от типа попавшего под его воздействие оборудования. Рассмотрим основные группы бытовых электроприёмников:
Группа электроприёмников | Последствия при воздействии высокого напряжения |
Изделия с классическими и инверторными электродвигателями (холодильники, насосы, компрессоры, стиральные и посудомоечные машины, кухонные комбайны) | Чрезмерный разгон двигателя (приводит к ускорению механического износа или моментальному повреждению подвижных деталей). Перегрев (с последующим возгоранием). Сбой в программном обеспечении (возможна снимаемая только перепрошивкой критическая ошибка). Поломка электронных компонентов и блоков. |
---|---|
Изделия с импульсным блоком питания (различная компьютерная, а также аудио- и видеотехника, принтеры, сканеры) | Импульсные БП достаточно устойчивы к повышенному напряжению, некоторые модели выдержат и 260-270 В на входе. В случае более экстремального перенапряжения выгорят входные предохранители БП. Если до этого момента часть высоковольтного импульса успеет проскочить дальше, то пострадают и другие компоненты устройства (вплоть до полного разрушения). |
Светотехнические изделия (источники света и сопутствующее им оборудование) | Рост яркости светового потока (приводит к быстрому перегоранию ламп). Выход из строя драйверов питания у светодиодов и встроенных дросселей у люминесцентных ламп. Сбои в системе управления освещением. Взрывы и возгорания (при экстремальных перенапряжениях). |
Нагревательное и отопительное оборудование | Повышенное тепловыделение (уменьшает срок службы нагревательных элементов и пожароопасно для всего окружающего). Сбой в программном обеспечении (при его наличии у устройства). Поломка электронных компонентов и блоков. |
Изделия передачи и распределения электроэнергии (провода, удлинители, распаячные коробки) | Пробой изоляции с последующим возгоранием (при экстремальных перенапряжениях). |
Прочие изделия | Перегрев (с последующим возгоранием). Сбой в программном обеспечении. Поломка электронных компонентов и блоков. |
Важно!
Повышенное напряжение может навредить не только кошельку человека (ремонт вышедшей из строя бытовой техники и электроники – удовольствие не дешёвое), но и его здоровью. Прямой риск связан с возгоранием или взрывом поражённого электроприбора, косвенный – с нежелательным для глаз слишком ярким свечением ламп, а также с выделением токсичных веществ из нагретых компонентов электроприборов (некоторые фракции могут образовываться не только при открытом горении, но и просто при длительном разогреве сверх нормальной температуры, характерном для ситуации с хронически повышенным напряжением).
Защита от высокого сетевого напряжения
Основной способ – применение специальных устройств, которые не допустят повышенное напряжение до отдельной нагрузки или сразу на какой-то участок сети (во всю сеть) и таким образом исключат его негативное влияние на электроприборы.
Рассмотрим основные виды таких устройств:
Устройство | Область применения | Типичное место установки | Работа при высоком напряжения |
Сетевой фильтр | Защита одного прибора или группы приборов | В непосредственной близости от защищаемого оборудования | Отключение нагрузки. Осуществляется только при экстремальном перенапряжении. Конкретная граница срабатывания зависит от характеристики внутреннего варистора. |
---|---|---|---|
Устройство защиты от импульсных перенапряжений (УЗИП) | Защита участка сети или всей сети (используется только в связке с автоматическим выключателем) | Во вводном щитке | |
Следует понимать, что напряжение, представляющее угрозу для большинства электроприборов, может быть ниже, чем напряжение способное вызвать отключающее срабатывание сетевого фильтра или УЗИП. | |||
Реле контроля напряжения (РКН) | Защита участка сети или всей сети, в редком случае – отдельного прибора | Во вводном щитке | Отключение нагрузки. Осуществляется в случае превышения напряжением задаваемого пользователем порога. |
Подходит только для относительно стабильных сетей. Если напряжение будет достигать установленной точки срабатывания слишком часто, то постоянные обесточивания значительно осложнят эксплуатацию подключенной нагрузки. | |||
Стабилизатор | Защита одного прибора, группы приборов, участка сети или всей сети | В непосредственной близости от защищаемого оборудования или вводного щитка | Коррекция (при критическом значении – отключение) |
Источник бесперебойного питания (ИБП) | Коррекция (при критическом значении – переход на АБ) | ||
Обратите внимание! Мы не включили в таблицу автоматические выключатели и предохранительные пробки, так как данные устройства предназначены для защиты от недопустимых значений тока и не могут рассматриваться как действенное средство борьбы с повышенным напряжением. |
Стабилизатор и ИБП обеспечивают наиболее целостную защиту от высокого напряжения. Они понижают его значение при любом, даже самом незначительном отклонении от нормы, и обеспечивают нагрузку электроэнергией либо с номинальными параметрами, либо с максимально приближенными к номинальным (отклонение у лучших моделей не более ±2%).
В случае критического сетевого скачка подключенная к стабилизатору нагрузка будет корректно обесточена, а подключенная к ИБП – продолжит функционировать за счёт накопленной в его батареях электроэнергии.
Обратите внимание!
Не все стабилизаторы и ИБП одинаково эффективны – некоторые модели не смогут работать согласно вышеприведённому описанию!
Обратите внимание!
Гарантированно решить проблему высокого сетевого напряжения, полностью исключив его негативное влияние на электроприборы, смогут только онлайн ИБП и инверторные стабилизаторы. У изделий других типов повышенное входное напряжение может отразиться на качестве выходного напряжения, возможны: искажения формы, отклонения от номинального значения, кратковременные обрывы, а в худшем случае – повторение входного скачка на выходе. Всё указанное так или иначе отразится на общем состоянии подключенного к стабилизатору/«бесперебойнику» оборудования.
- пониженное напряжение (хронические отклонения и резкие провалы);
- несинусоидальные или гармонические искажения (отклонения формы напряжения от синусоиды);
- электрические помехи.
Всё перечисленное будет нейтрализовано, а нагрузка запитана электроэнергией с эталонными параметрами!
Где купить инверторный стабилизатор или онлайн ИБП?
Предлагаем воспользоваться нашим официальным интернет-магазином производителя «Штиль», который на сегодняшний день является одним из лидеров отечественного рынка высокотехнологичного электрооборудования.
На указанной площадке вы сможете приобрести инверторные стабилизаторы напряжения и онлайн ИБП. Для заказа доступны как бытовые модели, так и модели для промышленного и коммерческого применения. Все предлагаемые к покупке изделия являются продукцией отечественного производства, ни в чем не уступающей лучшим зарубежным образцам, а в случае стабилизаторов и превосходящей их по ряду параметров. Каждый стабилизатор и ИБП соответствует выдвигаемым в рамках технических регламентов Таможенного Союза требованиям, что подтверждается наличием сертификатов и деклараций. Отметим, что оплатить покупку можно без перехода на сторонние ресурсы – непосредственно на сайте, а доставка осуществляется по всем городам и регионам России в кратчайшие сроки.