Зависимость напряжения от координаты

Цепи с распределенными параметрами

Как было показано в гл. I, электрическое и магнитное поле, а также превращение электромагнитной энергии в тепло, имеют место в каждом элементарном участке любых электрических устройств — индуктивных катушках, обмотках электрических машин и трансформаторов, линиях передачи электрической энергии и т. п. Следовательно, все устройства являются цепями с распределенными индуктивностью, емкостью и сопротивлением.

Однако, когда эти устройства рассматриваются в целом, они обычно заменяются эквивалентными двухполюсниками или четырехполюсниками с сосредоточенными параметрами г, L и С. Если устройство работает при одной частоте, эквивалентные схемы приводятся к простейшим — последовательному или параллельному соединению активного и реактивного сопротивлений для двухполюсника и к Т-образной или П-образной схеме с теми же элементами для четырехполюсника.

Если необходимо провести анализ для некоторого диапазона частот, эквивалентная схема становится тем сложней, чем шире этот диапазон. В общем случае приходится рассматривать цепь такой, какая она есть в действительности, т. е. как цепь с распределенными параметрами.

Необходимость рассмотрения устройств как цепей с распределенными параметрами возникает также в тех случаях, когда анализ должен выявить соотношения внутри устройства, например требуется определить напряжение и ток в разных точках линии передачи.

Далее методы расчета цепей с распределенными параметрами изучаются на примере однородных линий передач, широко применяемых в электроэнергетике и технике электрической связи.

Уравнения однородной линии

В двухпроводных однородных линиях индуктивность и сопротивление линии, а также емкость и проводимость через несовершенную изоляцию между проводами можно считать распределенными равномерно. Эти параметры на единицу длины двухпроводной линии, подсчитанные для линий различной конфигурации, в дальнейшем обозначены, соответственно, L, г, с, g.

Бесконечно малый элемент двухпроводной линии длиной dx может быть заменен эквивалентной схемой с параметрами Ldx, rdx, Cdx и rdx. На рис. 20.1 эта схема изображена жирными линиями и выбраны управления напряжений и токов. При этом индуктивность и сопротивление являются продольными параметрами линии, а емкость и проводимость — ее поперечными параметрами.

Цепи с распределенными параметрами

В каждом элементе dx линии происходит падение напряжения

Цепи с распределенными параметрами

В общем случае переменных напряжений и токов для элемента, расположенного на расстоянии х от конца линии и отмеченного на рис. 20.1 жирными линиями,

Цепи с распределенными параметрами

.

После сокращения на dx получается система уравнений в частных производных для мгновенных значений напряжений и токов:

Цепи с распределенными параметрами

решение которой при заданных начальных и граничных условиях определит u и i в функции х и t.

При анализе процессов в трехфазной линии каждая ее фаза может рассматриваться, как однофазная двухпроводная линия. Не приводя вывода, можно, например, указать, что для симметричной трехфазной воздушной линии, провода которой расположены в вершинах равностороннего треугольника и удалены от земли, эквивалентная каждой фазе двухпроводная линия имеет индуктивность I, вдвое меньшую, а емкость С, вдвое большую, чем двухпроводная линия с таким же расстоянием между проводами, как и трехфазная линия. Сопротивление г эквивалентной двухпроводной линии равно сопротивлению провода одной фазы, а проводимость g — проводимости одной фазы по отношению к земле.

Решение уравнений однородной линии для установившихся режимов

Режим постоянного напряжения:

Если к началу линии приложено постоянное напряжение U01, npи установившемся режиме напряжения и токи в линии будут также постоянными. При подстановке в уравнения линии вместо переменных мгновенных значений u и i постоянных во времени U0 и I0 в каждой точке линии производные по t будут равны нулю и уравнения станут обыкновенными дифференциальными уравнениями, в которых независимой переменной является x — расстояние от конца линии:

Цепи с распределенными параметрами

Для получения из приведенной выше системы одного уравнения с одним неизвестным U0 надо взять производную по х от первого уравнения:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

и подставить сюда значение из второго:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Если положить, что , то

Цепи с распределенными параметрами

Характеристическое уравнение и его корни имеют вид:

Цепи с распределенными параметрами

Общее решение для напряжения на расстоянии х от конца линии получает вид:

Цепи с распределенными параметрами

Следовательно, ток в этой точке

Цепи с распределенными параметрами

Отсюда видно, что однородную линию характеризуют две величины: Цепи с распределенными параметрами— волновое сопротивление иЦепи с распределенными параметрамикоэффициент распространения.

Цепи с распределенными параметрами

Постоянные интегрирования определяются из граничных условий, которыми могут быть две из четырех величин, например напряжение U01 ток I01 в начале линии или U02, I02 в конце линии. Пусть заданы напряжение U02 и сопротивление r2 нагрузки и тем самым ток Тогда для конца линии, т. е. при х = О,

Цепи с распределенными параметрами

Откуда

Следовательно, напряжение и ток на расстоянии х от конца линии будут:

Цепи с распределенными параметрами

Таким образом, напряжение и ток в любой точке линии определяются алгебраическими суммами ординат двух экспоненциальных кривых. Ординаты кривой с Цепи с распределенными параметрамиуменьшаются от начала к концу линии, а ординаты кривой Цепи с распределенными параметрами— от конца к началу. На рис.. 20.2 показаны составляющие и суммарные кривые U0 и I0 для случая r2 > р. Если включенное в конце линии сопротивление равно волновому, т. е. r2 = р, вторые члены выражений для U0 и I0 пропадают, и распределение U0 и I0 = Цепи с распределенными параметрамивдоль линии представляется одной зкспонентой.

Цепи с распределенными параметрами

Следовательно, в однородной линии постоянного тока происходит затухание напряжения и тока вдоль линии, определяемое коэффициентом распространения который в данном случае является также коэффициентом затухания.

Режим синусоидального напряжения

Если к началу линии приложено синусоидальное напряжение постоянной угловой частоты ω, при установившемся режиме напряжение и ток в каждой точке линии будут также синусоидальными функциями времени той же частоты. Так как синусоидальные напряжение и ток являются частным случаем переменных и и i, в расчетах надо учесть все параметры линии рис. 20.1, т. е. r, L, g и С.

Применяя символический метод, можно использовать результаты расчета для линии постоянного тока (п. 1), заменив продольное сопротивление r комплексным сопротивлением Цепи с распределенными параметрамиа поперечную про водимость g комплексной проводимостью Цепи с распределенными параметрами. Тогда характеристиками линии будут волновое сопротивление Z коэффициент распространения y:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Вещественная часть а коэффициента распространения является коэффициентом затухания, а мнимая называется коэффициентом фазы.

При указанном переходе от постоянного тока к синусоидальному комплексные напряжения и ток на расстоянии х от конца линии получают вид:

Цепи с распределенными параметрами

Если ввести гиперболические функции

Цепи с распределенными параметрами

Цепи с распределенными параметрами

выражения для будут:

Цепи с распределенными параметрами

Эти уравнения аналогичны уравнениям для однородных симметричных цепных схем, что и следовало ожидать, так как однородная линия рассматривалась как однородная цепная схема с бесконечно большим числом элементарных звеньев.

Однородная линия в целом является симметричным пассивным четырехполюсником. Его уравнения получают из последних выражений при х =1, где 1 — длина линии:

Цепи с распределенными параметрами

Параметры этого четырехполюсника

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Из уравнений линии видно, что напряжение и ток в любой точке линии являются также функцией частоты ω, так как от нее зависят волновое сопротивление Z, коэффициент распространения у и его составляющие Цепи с распределенными параметрами. Это значит, что в случае сложной формы кривых напряжения и тока, имеющей место в линиях связи, отдельные гармоники будут передаваться с разным коэффициентом затухания а, что вызывает нежелательные искажения. Чтобы их избежать, строят линии, у которых Цепи с распределенными параметрамиюТогда коэффициент распространения

Цепи с распределенными параметрами

Цепи с распределенными параметрами

и, следовательно, коэффициент затухания а = не зависит от частоты. Волновое сопротивление такой линии

Цепи с распределенными параметрами

является вещественным числом, т. е. активным сопротивлением, также независящим от частоты. В результате передача будет осуществляться без искажения. Такая линия называемся неискажающей.

Бегущие и стоячие волны

Цепи с распределенными параметрами

Уравнения линии для режима синусоидального напряжения могут быть преобразованы. После введения значения и обозначений

Цепи с распределенными параметрами

комплекс напряжения в линии получает вид:

Цепи с распределенными параметрами

Переходя к мгновенному значению напряжения

Цепи с распределенными параметрамиЦепи с распределенными параметрами

Цепи с распределенными параметрами

его можно рассматривать как сумму двух составляющих , зависящих от х и t.

В любой фиксированный момент времени первая составляющая иА распределена вдоль линии по закону синуса с амплитудой, которая и соответствии с множителем е» возрастает от конца линии к ее началу, т. е. затухает от начала линии к ее концу. Если в данный момент времени I’ в точке х’

Цепи с распределенными параметрами

то в точке х» 2 , прив р, тогда коэффициент отражения n от конца линии равен отношению отраженной волны к падающей, вычисленному в п. 2:

Цепи с распределенными параметрами

и. волна напряжения U0 отразится от конца линии без перемены знака, а волна тока I0 с переменой знака. На рис. 20.11, а показан напряжение и ток линии после отражения для г2 = 4р, т.е. для = 0,6. Отраженные волны 0,6 U0 и — 0,6 I0 увеличивают напряжение до 1,6 U0 и уменьшают ток до 0,4 I0. После отражения от начала инии волна — 0,6 U0 снизит напряжение линии до U0, а волна — 6 I0 снизит ток до — 0,2 I0 (рис. 20.11, б). В результате второго отра-ения от конца линии напряжение на ней будет 0,64 U0, а ток 0,16 I0 же. 20.11, в) и т. д.

При включении короткозамкнутой линии ее конец, как. и начало, удут отражать волну напряжения с переменой знака, а волну тока — без перемены. При включении такой линии волны напряжения U0 I тока I0 при t 1 Обоснованием высказанного положения является линейность уравнений (11-2) и (11-3), так как только в таких уравнениях сохраняется синусоидальность всех функций.

Применяя комплексную форму записи, перепишем уравнения в комплексном виде:
Цепи с распределенными параметрами
Ввиду того что комплексные значенияЦепи с распределенными параметрамине зависят от t и являются только функциями х, при переходе от уравнений (11-2) к (11-4) частные производные по х заменены обыкновенными.

Исключая из системы (11-4) ток Цепи с распределенными параметрамиполучаем уравнение относительно Цепи с распределенными параметрами

Цепи с распределенными параметрами
Аналогично, исключая из (11-4) напряжение Цепи с распределенными параметрамиполучаем уравнение относительно Цепи с распределенными параметрами

Цепи с распределенными параметрами
Обозначим квадратный корень из комплексного множителя при Цепи с распределенными параметрамиили Цепи с распределенными параметрамичерез

Цепи с распределенными параметрами
и назовем эту величину коэффициентом распространенияЦепи с распределенными параметрами. Смысл такого названия выяснится позже. Итак, уравнения (11-5) и (11-6) записываются в виде
Цепи с распределенными параметрами
Получились одинаковые однородные линейные дифференциальные уравнения второго порядка. Решение первого из них имеет вид:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Ток после этого получается подстановкой (11-9) в первое уравнение (11-4):

Цепи с распределенными параметрами

Цепи с распределенными параметрами

или

Цепи с распределенными параметрами

где

называется волновым сопротивлением линии

Цепи с распределенными параметрами

Смысл такого названия объяснен дальше. Подставив (11-7) в (11-9), получим:

Цепи с распределенными параметрами

Мгновенное значение напряжения в точке х равно мнимой части выражения

Цепи с распределенными параметрами

здесь Цепи с распределенными параметрами— аргументы комплексных величин Цепи с распределенными параметрами

Таким образом, мгновенное значение напряжения в любой точке линии слагается из двух функций.

Рассмотрим вначале первую из этих слагающих функций.

Если считать точку х фиксированной и рассматривать изменение напряжения в данной точке в зависимости от времени, то первая слагающая выражения (11-12) представит собой синусоидальную функцию с постоянной амплитудой.

Цепи с распределенными параметрами

Если же считать момент времени t фиксированным и рассматривать изменение мгновенного напряжения вдоль линии (т. е. в зависимости от х), то получим затухающую синусоидальную волну напряжения, амплитуда которой убывает с ростом х, т. е. по мере удаления-от начала линии к концу.

Величина а, характеризующая изменение амплитуды волны на единицу длины линии, называется коэффициентом ослабленияЦепи с распределенными параметрамиа величина Цепи с распределенными параметрамиравная изменению фазы на единицу длины линии, называется к о-эффициентом фазы.

Цепи с распределенными параметрами

Ранее применялся термин коэффициент затухания.

Убывание амплитуды волны вдоль линии обусловливается потерями в линии, а изменение фазы — конечной скоростью распространения электромагнитных колебаний.

Оба эти коэффициента а и Цепи с распределенными параметрамивходят в комплексный параметрЦепи с распределенными параметрамикоторый, следовательно, характеризует распространение волны напряжения и тока по линии.

На рис. 11-3, а буквой Цепи с распределенными параметрамиобозначена длина волны напряжения, равная расстоянию между двумя точками линии, в которых фазы рассматриваемой слагающей напряжения различаются на Цепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Полученная формула выражает зависимость, существующую между длиной волны и коэффициентом фазы линии.

Цепи с распределенными параметрами

На рис. 11-3, а изображены волны напряжения, соответствующие двум следующим друг за другом моментам времени:

С течением времени волна перемещается от начала линии к ее концу; она носит название прямой, или п а-дающей, волны.

Цепи с распределенными параметрами

Скорость перемещения падающей волны вдоль линии, называемая фазовой скоростью волны определяется как скорость перемещения точки, фаза колебания в которой остается постоянной.

Цепи с распределенными параметрами

Скорость распространения группы смежных по частоте волн характеризуется понятием групповой скорости].

Эго условие записывается для прямой волны в виде

Цепи с распределенными параметрами

откуда

Цепи с распределенными параметрами
и, следовательно,
Цепи с распределенными параметрами
Аналогичное исследование второго слагаемого выражения (11-12) показывает, что для произвольного момента времени оно представляет синусоидальную волну, амплитуда которой Цепи с распределенными параметрамиеах возрастает с увеличением х, т. е. по мере удаления от начала линии к ее концу. С течением времени волна перемещается от конца линии к ее началу (рис. 11-3,6); она называется обратной, или отраженной, волной.

Фазовая скорость обратной волны получается равной

Цепи с распределенными параметрами

знак минус указывает, что обратная волна

движется в направлении, противоположном направлению прямой волны.

Итак, мгновенное напряжение можно рассматривать как сумму двух волн, движущихся в противоположных направлениях, причем каждая из этих волн затухает в направлении движения.

Цепи с распределенными параметрами

На основании (11-13) и (11-14)

т. е. за время, равное одному периоду, как падающая, так и отраженная волны перемещаются на расстояние, равное длине волны.

Линии, физическая длина которых соизмерима с длиной волны, считаются длинными линиями. При достаточно высоких частотах практически любая протяженная электрическая цепь становится «длинной» по отношению к длине волны.

Цепи с распределенными параметрами

Как будет показано ниже, фазовая скорость в воздушной линии близка к скорости света

Цепи с распределенными параметрами

и поэтому частоте 50 Гц будет соответствовать длина волны 6000 км, а частоте Гц — длина волны 10 см. Следовательно, в первом случае длинной линией будет линия, измеряемая многими сотнями или тысячами километров, а во втором случае — цепь протяженностью в несколько сантиметров.

Цепи с распределенными параметрами

Возвращаясь к уравнениям (11-9) и (11-10) и записывая прямую и обратную волны в комплексной форме, имеем:

Цепи с распределенными параметрами

Напряжение и ток прямой и соответственно обратной волн связаны законом Ома:
Цепи с распределенными параметрами
Это соотношение объясняет смысл названия Цепи с распределенными параметрами— волновое сопротивление.

Постоянные интегрирования Цепи с распределенными параметрамивходящие в (11-9) и (11-10), находятся в зависимости от напряжения и тока в начале линии (граничные условия), если они заданы. При х = 0
Цепи с распределенными параметрами
откуда

Цепи с распределенными параметрами

Введем понятие коэффициента отражения волны в начале линии:

Цепи с распределенными параметрами
где Цепи с распределенными параметрами— входное сопротивление линии.

Подстановка выражений для Цепи с распределенными параметрамив (11-9) и (11-10) с учетом (11-16) дает:
Цепи с распределенными параметрами

Если заданы граничные условия на конце линии, то удобнее отсчитывать расстояние от конца, приняв координату х’.

Заменяя в уравнениях (11-9) и (11-10) х на (l — х’) и используя заданные граничные условия Цепи с распределенными параметрамиЦепи с распределенными параметрамиполучаем для Цепи с распределенными параметрамиследующие выражения:

Цепи с распределенными параметрами
Подставив их в (11-9) и (11-10), получим окончательные выражения для Цепи с распределенными параметрами

Цепи с распределенными параметрами
где аналогично предыдущему Цепи с распределенными параметрами— коэффициент отражения в конце линии:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

— выходное сопротивление на конце линии или в случае приемника входное сопротивление его.

Если сопротивление приемника равно волновому сопротивлению линии Цепи с распределенными параметрамито коэффициент отражения равен нулю Цепи с распределенными параметрамиПри этом в линии имеется только одна прямая волна; обратная волна отсутствует.

Это важное свойство реализуется в линиях связи, отражения в которых нежелательны по ряду причин.

Во-первых, если затухание в линии невелико, то отраженная волна создает эффект эха в начале линии.

Во-вторых, отражения связаны с потерей энергии. Часть энергии, достигшая приемного конца, не поступает в приемник, а возвращается по линии в виде энергии отраженной волны. При этом возникают дополнительные потери энергии в сопротивлении r и проводимости g линии. Если сопротивление источника, питающего линию, не равно волновому сопротивлению линии, то отраженная волна, достигнув начала линии, претерпевает повторное отражение и т. д. Происходящая вследствие этого потеря энергии в линии понижает общий к. п. д. передачи.

В-третьих, в случае отражений может иметь место нежелательное увеличение напряжения или тока в линии.

Вследствие указанных причин на практике стремятся согласовать сопротивление приемника с волновым сопротивлением линии. При согласовании нагрузки с линией выражения (11-18) упрощаются: с учетом того, чтоЦепи с распределенными параметрами Цепи с распределенными параметраминаходим:

Цепи с распределенными параметрами
Эти выражения показывают, что при перемещении точки наблюдения вдоль линии, нагруженной согласованно-на конце, в направлении от конца к началу линии, модуль напряжения возрастает в Цепи с распределенными параметрамираз, а фаза — на Цепи с распределенными параметрамирад.

Уравнения (11-19) аналогичны уравнениям симметричного четырехполюсника при согласованной нагрузке. Поэтому показатель распространения на всю длину линии Цепи с распределенными параметрамиэквивалентен мере передачи четырехполюсника g, а волновое сопротивление линии Цепи с распределенными параметрамианалогично характеристическому сопротивлению четырехполюсника Цепи с распределенными параметрами

Выражения (11-19) показывают, что при согласованной нагрузке Цепи с распределенными параметрамигеометрическим местом конца вектора напряжения Цепи с распределенными параметрамиявляется логарифмическая спираль. На рис. 11-4, иллюстрирующем сказанное, принято Цепи с распределенными параметрами(вектор Цепи с распределенными параметраминаправлен по действительной оси).

Большой интерес представляет также рассмотрение двух частных случаев нагрузки линии, а именно случаев, когда линия на конце разомкнута (режим холостого хода)

или замкнута (режим короткого замыкания). В первом случае Цепи с распределенными параметрамии соответственно коэффициент отражения Цепи с распределенными параметрамиво втором случае Цепи с распределенными параметрами

К рассмотрению этих двух случаев мы вернемся несколько позже.

Цепи с распределенными параметрами

Система уравнений (11-18) может быть переписана в следующем виде:

Уравнения (11-18) и (11-20) представляют собой уравнения линии в показательной (или волновой) форме при отсчете расстояния от конца линии. Они преобразуются с помощью гиперболических функций:

Цепи с распределенными параметрами

Положив в этих уравнениях х’ = l, получим уравнения линии в гиперболической форме, выражающие напряжение и ток в начале через напряжение и ток в конце линии:

Цепи с распределенными параметрами
Обращает на себя внимание сходство полученных уравнений с уравнениями симметричного четырехполюсника. Эти уравнения показывают, что однородная линия представляет собой симметричный четырехполюсник с характеристическими параметрами Цепи с распределенными параметрамии Цепи с распределенными параметрами

Цепи с распределенными параметрами

Применяя параметры четырехполюсника, получим связь между коэффициентами его и параметрами линии:

Цепи с распределенными параметрами

Показательная и гиперболическая формы записи уравнений линии (11-18) и (11-21) дополняют друг друга и применяются в зависимости от условий задачи.

Преимущество показательной формы записи уравнений заключается в большей наглядности рассмотрения физических процессов в линии с помощью прямых и обратных волн и удобстве построения геометрических мест на комплексной плоскости. Поэтому уравнения (11-18) широко использованы в последующих параграфах данной главы.

Гиперболическая форма записи уравнений также представляет в ряде случаев известные удобства с точки зрения исследования и расчета электрических величин в линии и их фазовых соотношений.

Рассмотрение линии как четырехполюсника базируется обычно на гиперболической форме записи уравнений.

Вторичные параметры однородной линии

Вторичными, или характеристическими, параметрами линии являются коэффициент ослабления, коэффициент фазы Цепи с распределенными параметрамии волновое сопротивление Цепи с распределенными параметрамикоторые в свою очередь выражаются через первичные параметры линии и частоту.

Цепи с распределенными параметрами

следует, что

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Совместное решение этих уравнений дает:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Из полученных выражений следует, что в общем случае зависят от частоты. Однако, как показывает исследование, в отличие от коэффициента ослабления, который изменяется в сравнительно ограниченных пределах, коэффициент фазы неограниченно растет с частотой.

Формула (11-25) позволяет выразить фазовую скорость распространения электромагнитной волны через первичные параметры линии и частоту по формуле (11-14).

Выражения (11-24) и (11-25) неудобны для практического использования ввиду их громоздкости. Существует ряд приближенных расчетных формул для вычисления вторичных параметров линии, учитывающих, что в области высоких частот (порядка 1 МГц и выше) сопротивление r весьма мало по сравнению Цепи с распределенными параметрамиа проводимость g ничтожно мала по сравнению с Цепи с распределенными параметрамиПервое допущение Цепи с распределенными параметрамиобусловлено тем, что индуктивное сопротивление прямо пропорционально частоте, между тем как сопротивление проводов r пропорционально квадратному корню из частоты вследствие поверхностного эффекта. Второе допущение справедливо для высокочастотных фидеров, которые, будучи «длинными» по сравнению с длиной волны, имеют весьма малую физическую длину и поэтому могут иметь надежную изоляцию между проводами. Особенно ничтожно мала проводимость g кабельных линий.

Используя для выражения

Цепи с распределенными параметрами

бином Ньютона, ограничиваясь первыми двумя членами разложения

Цепи с распределенными параметрами

Цепи с распределенными параметрами

и пренебрегая ввиду малости слагаемым — получим окончательно:

Цепи с распределенными параметрами

Эти формулы представляют собой пределы, к которым стремятся коэффициент ослабления и коэффициент фазы с ростом частоты.

Выражение (11-28) не следует понимать в том смысле, что а не зависит от частоты; входящие в него параметры r и g сами являются функциями частоты.

Первое слагаемое в правой части выражения (11-28) определяет ту долю ослабления, которая обусловливается продольным активным сопротивлением линии. Второе слагаемое определяет долю ослабления, которая вносится в передачу вследствие наличия поперечной активной проводимости линии.

Для уменьшения потерь при передаче электромагнитной энергии по линии стремятся к тому, чтобы сопротивление линии r и проводимость изоляции g были по возможности малы.

Фазовая скорость согласно (11-14) и (11-29) равна:

Цепи с распределенными параметрами

Это предельная фазовая скорость распространения волны вдоль линии при бесконечно большой частоте. При постоянном токе Цепи с распределенными параметрами= 0) понятия коэффициент фазы и фазовая скорость теряют физический смысл; на основании выведенной ранее формулы для Цепи с распределенными параметрами(11-7) при Цепи с распределенными параметрами= О

Цепи с распределенными параметрами

На рис. 11-5 показан характер изменений а и Цепи с распределенными параметрамив зависимости от частоты; коэффициент р с ростом частоты асимптотически приближается к прямой, образующей с осью Цепи с распределенными параметрамиугол

Цепи с распределенными параметрами

где m — масштабный коэффициент.

Для кабельных линий характерна резко выраженная емкостная проводимость Цепи с распределенными параметрамипо сравнению с которой проводимость изоляции g ничтожно мала. Кроме того, если частота не очень велика, то индуктивное сопротивление Цепи с распределенными параметрамимало по сравнению с активным сопротивлением r из-за малого расстояния между жилами. Поэтому в случае кабельной линии, пренебрегая параметрами g и L по сравнению с r и С, получаем упрощенные расчетные формулы

Цепи с распределенными параметрами

Цепи с распределенными параметрами

или

Цепи с распределенными параметрами

Соответственно фазовая скорость распространения волны в кабельной линии равна

Цепи с распределенными параметрами

т. е. прямо пропорциональна корню квадратному из частоты.

В теории электромагнитного поля доказывается, что произведение удельных значений индуктивности и емкости в линии

Цепи с распределенными параметрами

Цепи с распределенными параметрами

где с — скорость света в пустоте (около 3* 108 м/с); — диэлектрическая и магнитная проницаемости среды, окружающей токоведущие проводники.

Предел, к которому с ростом частоты стремится фазовая скорость волны, равен на основании (11-30) и (11-33):
Цепи с распределенными параметрами
В случае воздушной линии Цепи с распределенными параметрамии потому фазовая скорость в пределе стремится к скорости света в пустоте.

Цепи с распределенными параметрами

Цепи с распределенными параметрами

В случае кабельной линии и поэтому предельная фазовая скорость примерно вдвое меньше скорости света в пустоте.

Рисунок 11-6 иллюстрирует зависимость фазовой скорости волны от частоты и типа линии.
Волновое сопротивление линии

Цепи с распределенными параметрами

при постоянном токе Цепи с распределенными параметрами= 0) и бесконечной частоте Цепи с распределенными параметрами= оо) имеет действительные значения
Цепи с распределенными параметрами

Цепи с распределенными параметрами

В остальной части диапазона частот волновое сопротивление линии имеет емкостный характер, так как обычно[аргумент знаменателя в

правой части (11-34) больше аргумента числителя].

Цепи с распределенными параметрами

На рис. 11-7 показаны кривые изменения модуля Цепи с распределенными параметрамии угла Цепи с распределенными параметрамиволнового сопротивления линии в зависимости от частоты.

Подставив выражения для L и С в формулу Цепи с распределенными параметрами Цепи с распределенными параметрами, получим приближенные расчетные формулы для высоких частот в зависимости от размеров:

Цепи с распределенными параметрами

Средние значения Цепи с распределенными параметрамидля воздушных линий 400—500 Ом, для кабелей 50—70 Ом.
Цепи с распределенными параметрами

Рисунок 11-8 иллюстрирует графические зависимости Цепи с распределенными параметрамиот d/a и Цепи с распределенными параметрамидля воздушных и кабельных линий, построенные по формулам (11-35).

Линия без искажений

Сигналы, передаваемые по линии связи, представляют собой совокупность множества различных частот: дискретных — в случае периодических несинусоидальных сигналов и образующих непрерывный спектр — в случае непериодических сигналов.

Неискаженной передачей сигнала называется такая передача, при которой форма сигнала в начале и конце линии одинакова, т. е. все ординаты кривой напряжения или тока в конце линии прямо пропорциональны соответствующим ординатам кривой в начале линии. Такое явление имеет место в том случае, когда коэффициент ослабления линии, а также фазовая скорость на всех частотах одинаковы.

Неодинаковое затухание на разных частотах создает так называемые амплитудные искажения, а неодинаковая скорость волн на разных частотах — фазовые искажения.

Цепи с распределенными параметрами

Согласно (П-31) и (11-32) коэффициент ослабления и фазовая скорость в случае кабельных линий пропорциональны квадратному корню из частоты. В случае воздушных линий также существует зависимость а и от частоты. В результате этого получаются амплитудные и фазовые искажения.

Итак, для неискаженной передачи требуется, чтобы коэффициент ослабления а не зависел от частоты, а коэффициент фазы Цепи с распределенными параметрамибыл прямо’пропорционален частоте; в последнем случае фазовая скорость Цепи с распределенными параметрамиполучается не зависящей от частоты.

Такое положение имеет место при условии, что

Цепи с распределенными параметрами

В этом случае коэффициент распространения равен:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Если считать, что первичные параметры линии не зависят от частоты, то коэффициент ослабления в данном случае будет постоянен:
Цепи с распределенными параметрами
а коэффициент фазы — прямо пропорционален частоте:
Цепи с распределенными параметрами
Линия, параметры которой удовлетворяют условию (11-36), называется линией без искажений, поскольку любые сигналы распространяются по ней с сохранением их формы. Линия без искажений является одновременно и линией с минимальным затуханием, которое только и возможно при заданных параметрах r и g.

Волновое сопротивление линии без искажений — действительное число, что равносильно активному сопротивлению, не зависящему от частоты; в соответствии с (11-34) оно выражается простой формулой
Цепи с распределенными параметрами
Фазовая скорость в линии без искажений постоянна и совпадает с полученным ранее выражением (11-30) для предельной скорости распространения волны вдоль линии при бесконечно большой частоте:
Цепи с распределенными параметрами
Для устранения искажений, вызываемых несогласованностью сопротивления приемника с сопротивлением линии, т. е. во избежание возникновения отражений на приемном конце, сопротивление приемника должно быть равно Цепи с распределенными параметрамиКоэффициент полезного действия линии имеет в этом случае наибольшее возможное значение, равное Цепи с распределенными параметрамикак в линии при согласованной нагрузке.

Ввиду того что волновое сопротивление линии без искажений является активным, при согласованной нагрузке напряжение и ток в любой точке линии совпадают по фазе. Отношение мгновенных значений напряжения и тока в любой точке такой линии равно:
Цепи с распределенными параметрами
откудаЦепи с распределенными параметрами

Следовательно, на любом отрезке линии без искажений, нагруженной согласованно, энергия магнитного поля в каждый момент времени равна энергии электрического поля.

Цепи с распределенными параметрами

Следует заметить, что на практике условие (11-36), как правило, не выполняется; отношение обычно значительно меньше отношения C/g. Вследствие этого затухание линии всегда превышает минимальное. Наименее соответствуют условию (11-36) кабельные линии.

Чтобы линия наиболее соответствовала условию (11-36), следовало бы изменить какой-либо первичный параметр, например уменьшить r или С либо увеличить g или L.

Уменьшение активного сопротивления r возможно за счет применения проводов большего диаметра, что, однако, значительно удорожало бы линию. Увеличение проводимости изоляции g невыгодно, так как при этом возросло бы затухание линии.

Наилучшим средством для приближения первичных электрических параметров к оптимальному соотношению (11-36) является искусственное увеличение индуктивности включением в линию через определенное расстояние индуктивных катушек или применением кабеля, проводящие жилы которого обмотаны тонкой лентой из материала с высокой магнитной проницаемостью.

Линия без потерь

Независимо от того, соблюдается ли оптимальное соотношение первичных параметров (11-36) или не соблюдается, во всех случаях желательно, чтобы активное сопротивление r и проводимость изоляции g были по возможности малы (для уменьшения потерь энергии).

В воздушных линиях обычно индуктивное сопротивление линии Цепи с распределенными параметрамипревышает активное сопротивление r, а емкостная проводимость Цепи с распределенными параметрамипревышает активную проводимость g. С ростом частоты разница между указанными величинами становится еще более значительной.

В ряде случаев оказывается полезным в первом приближении рассматривать линию, не имеющую потерь, т. е. пренебрегать активными сопротивлением и проводимостью по сравнению с соответствующими реактивными составляющими. Такая идеализация допускается для приближенной качественной и количественной оценки исследуемых явлений. При этом весьма упрощаются расчетные выражения и гиперболические уравнения линии переходят в тригонометрические.

Цепи с распределенными параметрами

Итак, основным исходным предложением, которое делают при рассмотрении линии без потерь, .является приближенное условие, что В этом случае вторичные параметры линии принимают весьма простой вид, а именно:

Цепи с распределенными параметрами

Саедовательно, в линии без потерь ослабление отсутствует. Ввиду постоянства фазовой скорости

Цепи с распределенными параметрами

отсутствуют также фазовые искажения.

Выражения для коэффициента фазы, фазовой скорости и волнового сопротивления линии без потерь совпадают с выражениями, полученными для линии без искажений. Следовательно, все сказанное о линии без искажений полностью относится и к линии без потерь.

Цепи с распределенными параметрами

Ввиду того, что гиперболические функции с мнимым аргументом преобразуются в тригонометрические функции, гиперболические уравнения линии (11-21) принимают тригонометрическую форму:

Эти уравнения используются ниже при рассмотрении стоячих волн в линии без потерь.

Энергия, передаваемая по линии, складывается из энергии электрического и магнитного полей.

В том случае, когда к концу линии без потерь присоединено сопротивление, равное волновому, на любом отрезке линии соблюдается условие (11-40), полученное для линии без искажении. При этом вся энергия, доставляемая падающей волной, поглощается в сопротивлении нагрузки.

Если сопротивление нагрузки отлично от волнового, то в месте присоединения нагрузки энергия перераспределяется между полями, в результате чего возникают отражения.

Цепи с распределенными параметрами

В предельном случае, когда линия на конце разомкнута, падающая волна встречает бесконечно большое сопротивление; ток в конце линии обращается в нуль, и соответственно энергия магнитного поля переходит в энергию электрического поля. Напряжение на разомкнутом конце линии удваивается, и возникает отраженная волна того же знака, что и падающая = 1; см. (11-16а)].

Цепи с распределенными параметрами

В другом предельном случае, когда линия на конце замкнута накоротко,, падающая волна встречает сопротивление, равное нулю, напряжение в конце линии обращается в нуль и соответственно энергия электрического поля переходит в энергию магнитного поля. Ток на короткозамкнутом конце линии удваивается, и возникает отраженная волна, знак которой противоположен знаку падающей волны =—1).

При активной нагрузке Цепи с распределенными параметрамикоэффициент отражения Цепи с распределенными параметрамипри Цепи с распределенными параметрамиПоэтому в первом случае возрастает напряжение и убывает ток, а во втором случае, наоборот, убывает напряжение и возрастает ток по сравнению с режимом согласованной нагрузки Цепи с распределенными параметрами= 0).

Режимы работы линии без потерь. Стоячие волны

Исследуем закон распределения действующих напряжения и тока вдоль линии без потерь. С этой целью воспользуемся уравнениями линии (11-18) и (11-41) в комплексной и гиперболической формах.

Приняв в (11-18) мнимый коэффициент распространения Цепи с распределенными параметрамиполучим для любой точки линии на расстоянии х’ от конца:
Цепи с распределенными параметрами
Входящий в эти уравнения коэффициент отражения

Цепи с распределенными параметрами

представляет собой в общем случае комплексную величину.

Выражения (11-42) наглядно свидетельствуют о том, что комплексное напряжение в любой точке х’ слагается

Цепи с распределенными параметрами

из падающей и отраженной волн напряжения, амплитуды которых находятся в соотношении в свою очередь комплексный ток равен разности падающей и отраженной волн тока с тем же соотношением амплитуд.

Цепи с распределенными параметрами

Точкам (k — целое число), удовлетворяющим условию

Цепи с распределенными параметрами
соответствует максимальное действующее значение U, так как при этом фазы падающей и отраженной волн напряжения совпадают. На расстоянии Цепи с распределенными параметрамиот этих точек падающая и отраженная волны оказываются в противофазе и действующее напряжение имеет минимум. При этом удовлетворяется условие

Цепи с распределенными параметрами
Координаты максимумов и минимумов U, являющиеся многозначными функциями Цепи с распределенными параметрамине зависят от времени, т. е. с течением времени они остаются на одном и том же месте; минимум U располагается посредине между двумя соседними’ максимумами U, причем расстояние между ближайшими максимумами (или минимумами) составляетЦепи с распределенными параметрами

Таким образом, кривая действующих значений напряжения вдоль линии без потерь представляет собой волнообразную кривую, максимумы и минимумы которой чередуются (см. дальше рис. 11-10, б и г).

Аналогичные рассуждения приводят к выводу, что и кривая действующих значений тока вдоль линии без потерь представляет собой волнообразную кривую, смещенную относительно кривой действующих значений напряжения на четверть длины волны. Места максимумов напряжения совпадают с местами минимумов тока и, наоборот, минимумы U совпадают с максимумами I.

Цепи с распределенными параметрами

При отсутствии отраженной волны = 0) действующие значения U и I вдоль линии без потерь не изменяются.

Цепи с распределенными параметрами

Чем больше приближается коэффициент отражения к единице, тем больше разнятся максимумы и минимумы U (или I).

Цепи с распределенными параметрами

При = 1, т. е. при равенстве амплитуд прямой и обратной волн, в линии устанавливаются стоячие волны напряжения и тока. Кривые действующих значений U и I вдоль линии представляют собой в этом случае «выпрямленные» синусоиды; на линии образуются у з л ы, т. е. точки, в которых U или I равны нулю, и п у ч н о с т и, т. е. точки, в которых U или I максимальны.

Цепи с распределенными параметрами

Из сказанного выше следует, что узлы напряжения совпадают с пучностями тока и, наоборот, узлы тока сов-

падают с пучностями напряжения. Соответственно узлы (или пучности) напряжения и тока сдвинуты на четверть длины волны друг относительно друга.

На рис. 11-9 в виде примера показано сложение прямой и обратной волн напряжения, имеющих одинаковые амплитуды, для трех моментов времени: Цепи с распределенными параметрамиСумма бегущих в противоположные стороны волн образует стоячую волну, показанную на рис. 11-9 в виде мгновенных значений для моментов времениЦепи с распределенными параметрами

Цепи с распределенными параметрами

Из этого рисунка видно, что на протяжении всего участка между двумя соседними узлами стоячей волны синусоидальное изменение напряжения во времени происходит с одинаковой начальной фазой: при прохождении узла начальная фаза синусоидальных колебаний изменяется скачкообразно на величину Сказанное в равной мере относится и к стоячей волне тока.

На основании приведенного выше выражения для коэффициента отражения Цепи с распределенными параметрамиможно заключить, что условие Цепи с распределенными параметрами= 1 выполнимо в трех случаях: при Цепи с распределенными параметрами(холостой ход), Цепи с распределенными параметрами(короткое зашивание) и Цепи с распределенными параметрами(реактивная нагрузка). Этим условиям соответствуют стоячие волны, возникающие в линии без потерь.

Распределение действующих значений напряжения и тока вдоль линии для холостого хода и короткого замыкания иллюстрируется на рис. 11-10, а и д.

Для сравнения на рис. 11-10 показано распределение напряжения и тока для других режимов работы линии.

При активной нагрузке Цепи с распределенными параметрами(случай б) максимумы и минимумы U и I совпадают по своему местоположению с аналогичными значениями для режима холостого хода; при активной нагрузке Цепи с распределенными параметрами Цепи с распределенными параметрами(случай з) максимумы и минимумы расположены так же, как при коротком замыкании; при согласованной нагрузке Цепи с распределенными параметрами(случай в) кривые U и I изображаются прямыми, параллельными оси абсцисс.

Стоячие волны легко исследуются с помощью уравнений (11-41).линии без потерь.

При холостом ходе Цепи с распределенными параметрами= 0)
Цепи с распределенными параметрами
Узлы напряжения находятся в точках, для которых
Цепи с распределенными параметрами

Цепи с распределенными параметрами

или

откуда

Цепи с распределенными параметрами

Пучности напряжения находятся в точках, для которых

Цепи с распределенными параметрами
или
Цепи с распределенными параметрами
откуда

Цепи с распределенными параметрами

Разомкнутый конец линии совпадает с узлом тока и пучностью напряжения (рис. 11-10, а).

Как видно из (11-45), ток опережает по фазе напряжение на 90°, когда Цепи с распределенными параметрамиимеют одинаковый знак Цепи с распределенными параметрамии т.д.) и отстает на 90° от напряжения, когда знаки Цепи с распределенными параметрамиразличны

Цепи с распределенными параметрами

и т. д.).

При коротком замыкании, положив в (11-41) Цепи с распределенными параметрамиполучим
Цепи с распределенными параметрами
На замкнутом конце линии х’ = 0 и в точках, удаленных от него на целое число полуволн х’ Цепи с распределенными параметраминаходятся узлы напряжения и пучности тока, а в точках, удаленных от конца на нечетное число четвертей волн

Цепи с распределенными параметрами

находятся пучности напряжения и узлы тока (рис. 11-10,5).

Как видно из (11-46), ток отстает по фазе от напряжения на 90°, когда Цепи с распределенными параметрамиимеют одинаковые знакиЦепи с распределенными параметрамии т. д.). и опережает на 90° напряжение, когда знаки Цепи с распределенными параметрамиразличныЦепи с распределенными параметрамии т. д.).

Следует заметить, что наличие хотя бы самых малых потерь в реальных линиях приводит к тому, что действующие значения U и I не снижаются до нуля, а достигают некоторых минимальных значений в точках, соответствующих узлам.

В случае стоячих волн мощность в узлах напряжения и тока равна нулю. В остальных точках линии имеет место только реактивная мощность, так как напряжение и ток сдвинуты по фазе на 90°. В этом случае энергия не передается вдоль линии, а происходит лишь обмен энергией между электрическим и магнитным нолями на участках линии, ограниченных узлами напряжения и тока.

Если в линии имеются потери или приемник потребляет активную мощность, то узлы исчезают; амплитуда падающей волны превышает амплитуду отраженной волны, н за счет разности амплитуд происходит процесс передачи энергии вдоль линии.

Цепи с распределенными параметрами

Для количественной оценки степени согласования линии с нагрузкой в радиотехнике используется коэффициент бегущей волны, под которым понимается отношение минимума кривой распределения U или I к максимуму той же величины:

С учетом (11-43) и (11-44) имеем:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

откуда

Цепи с распределенными параметрами

В случае активной нагрузки выражение (Н-48) упрощается. При и согласно (11 -48)

Цепи с распределенными параметрами

Цепи с распределенными параметрами

при и, следовательно,

Цепи с распределенными параметрами

В реальных условиях коэффициент бегущей волны обычно не ниже 0,5—0,6.

Кривую распределения действующих значений напря* жения вдоль линии используют на практике для измерения длины волны или частоты. Длина волны определяется удвоенным расстоянием между соседними максимумами или минимумами кривой распределения, а частота вычисляется по длине волны на основании (11-15).

Входное сопротивление линии

Входное сопротивление линии, измеренное в произвольной точке на _ расстоянии х’ от конца, определяется отношением Цепи с распределенными параметрамии может быть представлено в комплексной или гиперболической форме. Ради общности рассмотрения вопроса будем считать, что линия нагружена на конце некоторым сопротивлением Цепи с распределенными параметрамикоторое в зависимости от условий может быть любым.

Комплексная форма выражения для входного сопротивления линии получается на основании (11-18):
Цепи с распределенными параметрами
или
Цепи с распределенными параметрами
Данное выражение показывает, что с изменением координаты х’ модуль входного сопротивления линии колеблется между некоторыми максимумами и минимумами (которые в общем случае отличаются друг от друга).

Допустим, что модуль Z достигает некоторого максимума в точке Цепи с распределенными параметрамиТогда максимумы будут также в точках, соответствующих изменению аргумента Цепи с распределенными параметрамина величину Цепи с распределенными параметрами, что даст:
Цепи с распределенными параметрами
Следовательно, максимумы чередуются через каждые полволны. Посредине между максимумами будут минимумы, которые также чередуются через каждые полволны.

Если вместо координаты Цепи с распределенными параметрамиварьировать коэффициентом фазы Цепи с распределенными параметрамименяя частоту источника, то получится аналогичная волнообразная кривая, причем максимумы и соответственно минимумы будут отстоять друг от друга на Цепи с распределенными параметрами(здесь х’ = const). Исследуя изменение входного Сопротивления линии при плавном изменении частоты источника, можно зафиксировать два следующих друг за другом максимума (или минимума) z, соответствующих частотам Цепи с распределенными параметрами

В этом случаеЦепи с распределенными параметрами
и, следовательно,Цепи с распределенными параметрами
откудаЦепи с распределенными параметрами
При малом расхождении частот Цепи с распределенными параметрамифазовые скорости Цепи с распределенными параметрамипочти одинаковы: Цепи с распределенными параметрами

Цепи с распределенными параметрами

Данная формула позволяет определить расстояние от точки наблюдения до ближайшей точки линии, в которой имеет место отражение (например, при коротком замыкании на линии), производя измерение только в одной точке.
Волнообразный характер кривой z подчиняется в общем случае закону изменения модуля гиперболического тангенса с комплексным аргументом, что видно из следующего вывода.

Непосредственно из (11-21) следует:

Цепи с распределенными параметрами

Обозначив Цепи с распределенными параметрамиимеемЦепи с распределенными параметрами
При холостом ходе Цепи с распределенными параметрамивходное сопротивление линии согласно (11-53) равно:
Цепи с распределенными параметрами
а при коротком замыканииЦепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

С учетом (11-55) и (11-56) входное сопротивление Z легко выразить через

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Этой формулой пользуются в том случае, когда из опытов холостого хода и короткого замыкания известны

Данные опытов холостого хода и короткого замыкания используются также для вычисления характеристических параметров линии.

На основании (11-55) и (11-56)

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Эти формулы совпадают с (9-35). Ввиду того что коэффициент фазы р определяется по (11-57) неоднозначно, при вычислении производится проверка на основании (11-14), причем первоначально фазовая скорость выбирается ориентировочно.

Вычисление характеристических параметров по формулам (11-57) иллюстрировано ниже примером 11-1.

На рис. 11-11 показаны кривые изменения модулей Цепи с распределенными параметрамив зависимости от координаты х’. В пределе, т. е. при х’ Цепи с распределенными параметрамимаксимумы и минимумы кривой стремятся к значению Цепи с распределенными параметрами

Цепи с распределенными параметрами

Входные сопротивления линии без потерь при холостом ходе и коротком замыкании могут быть получены из (11-55) и (11-56) заменой

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Эти реактивные входные сопротивления с учетом их знака изображаются котангенсоидами и тангенсоидами (рис. 11-12). Аргументом может служить также величина если изменять частоту при постоянной длине х’.

Сопоставляя эти графики с частотными характеристиками сопротивлений реактивных двухполюсников, легко убедиться в их сходстве: резонансы напряжений и токов чередуются, однако в отличие от двухполюсников, имеющих ограниченное число резонансов, линия без потерь имеет бесконечное число резонансных точек, что соответствует представлению линии как цепочки из бесконечного числа индуктивностей и емкостей.

Входное сопротивление линии без потерь при Цепи с распределенными параметрамииндуктивно в случае короткого замыкания и емкостно в случае холостого хода. При Цепи с распределенными параметрамив первом случае наступает резонанс токов (z = Цепи с распределенными параметрами), во втором случае — резонанс напряжений (z= 0).

Цепи с распределенными параметрами

Следует отметить, что в реальных условиях вследствие наличия потерь входное сопротивление линии никогда не снижается до нуля и никогда не достигает бесконечного значения.

При этом короткозамкнутая линия при Цепи с распределенными параметрамиимеет большее входное сопротивление, чем разомкнутая линия при Цепи с распределенными параметрами, а разомкнутая линия при Цепи с распределенными параметрамиимеет меньшее входное сопротивление, чем короткозамкнутая при Цепи с распределенными параметрами.

Пример 11-1.

Цепи с распределенными параметрами

Даны результаты измерения входных сопротивлений линии длиной 160 км на частоте 1000 Гц при холостом ходе и коротком замыкании: Ом. Требуется вычислить первичные и вторичные параметры линии.

Цепи с распределенными параметрами

Расчет начинается с вычисления волнового сопротивления и коэффициента распространения:

Целое число к находится на основании ориентировочного расчета величины Цепи с распределенными параметрамиесли исходить из приближенного значения фазовой скорости Цепи с распределенными параметрамикм/с (если линия воздушная), то

Цепи с распределенными параметрами

Следовательно, надо принять

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

коэффициент распространения

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Первичные параметры линии находятся на основании выражений:

Цепи с распределенными параметрами
Таким образом,
Цепи с распределенными параметрами

Линия как элемент резонансной цепи

Четвертьволновая линия с малыми потерями, разомкнутая на конце, обладает свойствами резонансной цепи, состоящей из последовательно соединенных r, L и С. При частоте, при которой на линии укладывается четверть волны (такую частоту условимся называть резонансной), входное сопротивление линии будет активным и притом минимальным.

При малом отклонении частоты от резонансной модуль входного сопротивления линии резко возрастает: входное сопротивление приобретает емкостный характер при понижении частоты и индуктивный характер — при повышении.

Входное сопротивление линии с малыми потерями, разомкнутой на конце, можно получить из (11-21), разлагая Цепи с распределенными параметрамипо формулам тригонометрии и приняв ввиду малости Цепи с распределенными параметрамиЦепи с распределенными параметрамиЦепи с распределенными параметрами

Выражение примет вид:
Цепи с распределенными параметрами
Вблизи резонансной частоты Цепи с распределенными параметрами1. Поэтому

Цепи с распределенными параметрами

Если через Цепи с распределенными параметрамиобозначить коэффициент фазы при резонансной частоте, т. е. принять Цепи с распределенными параметрамии учесть соотношение Цепи с распределенными параметрамиЦепи с распределенными параметрамито Цепи с распределенными параметрамиможно преобразовать следующим образом:
Цепи с распределенными параметрами
Здесь, так же как и Цепи с распределенными параметрамирасстройка частоты по отношению к резонансной. Следовательно,

Цепи с распределенными параметрами
Было показано, что при частоте, близкой к резонансной, когда Цепи с распределенными параметрамизначительно, меньше единицы, комплексное сопротивление резонансной цепи равно:

Цепи с распределенными параметрами

Рассматривая четвертьволновую линию как резонансную цепь, можно в силу одинаковой структуры выражений (11-58) и (11-59) считать, что добротность линии равна:

Цепи с распределенными параметрами

При этом резонансные характеристики, приведенные, применимы и к рассматриваемой линии.

Соответственно полоса пропускания, представляющая собой величину, обратную добротности, равна:
Цепи с распределенными параметрами
Здесь под полосой пропускания, подразумевается отнесенная к резонансной частоте ширина резонансной кривой между точками, соответствующими половине максимальной мощности (когдаЦепи с распределенными параметрами).

При малых значениях коэффициента а добротность получается высокой, достигая примерно 1000—4000, что намного превышает добротность контуров r, L и С, В связи с этим возрастает и острота настройки.

Искусственные линии

Искусственной линией называется цепь с сосредоточенными параметрами, приближающаяся по своим частотным характеристикам (в заданном диапазоне частот) к цепи с распределенными параметрами.

Искусственные линии находят широкое применение в лабораторных условиях и в особенности в современной импульсной радиотехнике для получения требуемого запаздывания сигналов.

Отмечалось, что всякая однородная линия представляет собой симметричный четырехполюсник с. мерой передачи, равной

Цепи с распределенными параметрами

и характеристическим сопротивлением, равным волновому:

Цепи с распределенными параметрами

Заменяя линию эквивалентным Т-образным четырехполюсником, согласно рис. 9-17, а получаем на основании формул (11-23) расчетные выражения:

Цепи с распределенными параметрами

Цепи с распределенными параметрами

Для какой-либо фиксированной частоты такой Т-образный четырехполюсник может быть осуществлен. Однако при передаче сигналов в некоторой заданной полосе частот величины представляют сложные функции от частоты, не реализуемые в виде простейших элементов. В этом случае искусственная линия создается в виде цепной схемы, каждое звено которой с достаточной степенью точности заменяет весьма малый участок однородной линии.

  1. Электротехника
  2. Основы теории цепей
  • Электрическая энергия, ее свойства и применение
  • Электрическая цепь
  • Электрический ток
  • Электрические цепи постоянного тока
  • Анализ переходных и установившихся процессов методом интеграла свертки
  • Операторный метод расчета переходных процессов
  • Метод пространства состояний электрических цепей
  • Синтез электрических цепей

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Зависимость напряжения от координаты

Каждая точка электрического поля характеризуется векторной величиной – напряженностью поля. Напряженность поля в данной точке равна силе, действующей на положительный пробный заряд, помещенный в эту точку, и отнесенной к единице заряда. Это – силовая характеристика электрического поля.

При перемещении электрического заряда в поле совершается работа. Электростатическое поле обладает очень важным свойством потенциальностью: работа по перемещению заряда из одной точки поля в другую не зависит от формы траектории. Это позволяет ввести понятие напряжения (или разности потенциалов). Напряжение U между двумя точками поля (*Под словами «пояс», «электрическое поле» здесь и в дальнейшем мы будем понимать электростатическое поле, то есть поле, созданное неподвижными зарядами.) равно работе, совершаемой электрическим полем по перемещению единицы положительного заряда из одной точки в другую.

В отличие от напряженности, определенной в отдельно взятой точке, напряжение характеризует две точки ноля. Если зафиксировать одну точку, выбрав ее за начало отсчета, то любая точка поля будет иметь определенное напряжение по отношению к выбранной точке. Это напряжение называют потенциалом φ. Очевидно, что началу отсчета соответствует нулевой потенциал. Чаще всего нулевой потенциал приписывается точке, бесконечно удаленной от заряда, создающего поле. В этом случае потенциал φ некоторой точки поля равен работе, совершаемой электрическим полем по перемещению единицы положительного заряда из этой точки в бесконечность. Это – энергетическая характеристика электрического поля.

Иногда задавать в каждой точке скалярную величину – потенциал φ – удобнее, чем векторную величину напряженность . Естественно, что эти две величины должны быть связаны друг с другом.

Рассмотрим вначале однородное электрическое поле. Его напряженность одинакова во всех точках; силовые линии такого поля – параллельные прямые (рис. 1).

Найдем разность потенциалов между точками B и D. Потенциал φB точки B равен работе по перемещению единицы заряда из этой точки в бесконечность. Форма траектории при подсчете работы не имеет значения, поэтому будем перемещать заряд сначала по отрезку BC потом по отрезку CD а затем из точки D в бесконечность. Сила, действующая на единицу заряда со стороны электрического поля, равна напряженности. На отрезке ВС работа этой силы равна l, где E – проекция вектора напряженности на силовую линию, a l – длина отрезка ВС. На отрезке CD сила работы не совершает, так как она перпендикулярна перемещению. Наконец, работа по перемещению единицы заряда из точки D в бесконечность равна потенциалу φD. Поэтому: или для разности потенциалов:

(1)

Для того чтобы формула (1) давала правильный знак разности потенциалов, величине l надо приписывать определенный знак в зависимости от расположения точек B и C на силовой линии. Будем считать, что l – это проекция вектора BD на направление силовой линии. Тогда знак положителен, если точка C лежит «ниже» по силовой линии, чем точка B и отрицателен в противоположном случае. Для случая, изображенного на рисунке 1, l > 0, и разность потенциалов , что соответствует убыванию потенциала вдоль силовой линии .

Итак, в однородном электрическом иоле между напряженностью и разностью потенциалов имеется простая связь, даваемая формулой (1).

Какова связь между потенциалом и напряженностью в случае неоднородного электрического поля? В таком поле напряженность меняется от точки к точке. Пусть, для простоты рассуждений, изменение напряженности происходит только в одном направлении, которое примем за ось ОХ (рис. 2).

Тогда напряженность поля зависит только от координаты x: . Ясно, что в небольших участках пространства напряженность меняется мало, и электрическое поле там можно приближенно считать однородным. Возьмем близкие точки B и D и найдем разность потенциалов между ними. Воспользуемся формулой (1). Потенциал так же, как и напряженность, зависит только от координаты x (*Плоскость x = const эквипотенциальна, так как при перемещении единицы заряда в этой плоскости электрическое поле работы не совершает.):

Проекция вектора на ось ОХ равна разности координат точек D и B:

Таким образом, для близких точек B и D получаем:

(2)

Чтобы формула (2) стала точной, надо устремить точку B к точке D и найти предел, к которому стремится правая часть при неограниченном сближении точек:

(3)

Легко увидеть, что правая часть формулы (3) – это производная потенциала, взятая с обратным знаком. Таким образом, в неоднородном электрическом поле связь между потенциалом и напряженностью в каждой точке следующая:

(4)

Знак минус в формуле (4) означает, что потенциал убывает вдоль силовой линии: поскольку проекция напряженности на силовую линию , что и означает убывание потенциала.

Если нарисовать график зависимости φ от x, то тангенс угла наклона α касательной к графику в каждой его точке равен производной в этой точке (рис. 3). Поэтому можно сказать, что напряженность электрического поля определяет наклон касательной к графику потенциала.

Рассмотрим теперь несколько конкретных задач.

Задача 1. Сфера радиуса R имеет заряд Q. Найти зависимость напряженности и потенциала от расстояния r от центра сферы. Нарисовать графики.

Найдем вначале напряженность поля. Внутри сферы электрического поля нет: при r < RE = 0. Вне сферы напряженность поля такая же, как у точечного заряда Q помешенного в центр сферы: при r> R проекция напряженности на выбранное направление от центра , где ε0 – электрическая постоянная. На поверхности сферы, при r = R электрическое поле испытывает скачок . Зависимость E от r графически показана на рисунке 4, а.

image003.jpg

Величину скачка ΔE можно выразить через поверхностную плотность заряда (равную заряду, приходящемуся на единицу площади поверхности сферы):

Заметим, что это общее свойство электростатического поля: на заряженной поверхности его проекция на направление нормали всегда испытывает скачок независимо от формы поверхности.

Выясним теперь, как меняется потенциал φ в зависимости от r. Мы уже знаем, что в любой точке тангенс угла наклона касательной к графику потенциала должен совпадать со значением проекции напряженности (взятой с противоположным знаком). При 0 < r < RE = 0, и, следовательно, во всех этих точках касательная к графику потенциала должна быть горизонтальной. Это означает, что на участке 0 < r < R потенциал не меняется: φ = const.

Вне сферы, при r > R производная отрицательна и величина ее убывает с расстоянием r. Поэтому и потенциал должен убывать с расстоянием, стремясь к нулю при . Действительно, чем дальше расположена точка, в которой мы ищем потенциал, тем меньшую работу надо совершать при перемещении единицы заряда из этой точки в бесконечность. Величина потенциала φ при r > R такая же, как у точечного заряда, помещенного в центр сферы:

Может ли потенциал испытать скачок на поверхности сферы, то есть при r = R? Очевидно, что нет. Скачок потенциала означал бы, что при перемещении единичного заряда между двумя очень близкими точками 1 и 2 электрическое поле совершало бы конечную работу:

должно оставаться конечным при что невозможно. Таким образом, потенциал не испытывает скачков.

График зависимости φ от r изображен на рисунке 4, б.

Задача 2. Шар радиуса R равномерно заряжен по всему объему. Полный заряд тара Q. Нарисуйте графики зависимости напряженности и потенциала от расстояния r от центра шара.

Такой шар можно представить себе состоящим из большого числа тонких заряженных сфер, вложенных одна в другую. Каждая сфера внутри себя поля не создает, а вне создает поле такое же, как точечный заряд, помещенный в ее центр. Поэтому вне шара, при r > R напряженность такая же, как напряженность поля точечного заряда Q помещенного в центр шара:

Внутри шара, на расстоянии R поле создают только сферы с радиусами от 0 до r (для сфер большего радиуса рассматриваемая точка находится внутри них). Следовательно, напряженность на расстоянии s от центра шара такая же, как напряженность поля точечного заряда Qr. помещенного в центр шара, где Qr– суммарный заряд всех сфер с радиусами от 0 до r, то есть заряд шара радиуса r. Если на шар радиуса R приходится заряд Q, то на шар радиуса r будет приходиться заряд

Таким образом, внутри шара напряженность поля – она линейно растет с расстоянием.

На поверхности шара, в точке r = R напряженность скачка не испытывает. Это находится в соответствии с общим правилом, так как поверхностная плотность заряда в данном случае равна нулю: шар заряжен однородно, и на бесконечно тонкий поверхностный слой приходится бесконечно малый заряд.

График зависимости E от r показан на рисунке 5, a.

Нарисуем теперь график потенциала. Производная от потенциала

всегда отрицательна (E ≥ 0). Поэтому с увеличением r потенциал должен монотонно убывать. В точке r = 0 производная потенциала равна нулю. Следовательно, касательная к графику в. этой точке горизонтальна: в точке r = 0 потенциал имеет максимум. В точке r = R ни потенциал, ни его производная скачков не испытывают. Первое следует из общего правила для потенциала, о втором мы уже говорили выше. Поэтому кривые, изображающие зависимость потенциала от расстояния при r < R и r > R в точке r = R должны сопрягаться – гладко без излома переходить одна в другую. При потенциал . График зависимости φ от r представлен на рисунке 5, б.

Задача 3. Две плоскости расположены параллельно друг другу на расстоянии d и заряжены с поверхностной плотностью заряда σ1 и σ2 соответственно. Нарисовать графики зависимости напряженности поля и потенциала от координаты x (ось ОХ перпендикулярна пластинам). Рассмотреть случаи одноименных (рис. 6, а) и разноименных (рис. 7, а) зарядов на пластинах.

image004.jpg

Каждая плоскость создает по обе стороны от себя однородное электрическое поле, напряженность которого

Воспользовавшись принципом суперпозиции, для случая одноименных зарядов приходим к графику, показанному на рисунке 6, б, а для разноименных – к графику на рисунке 7, б. Скачки напряженности опять соответствуют общему правилу:

Соответствующие графики для потенциалов показаны на рисунках 6, в и 7, в. На отдельных участках зависимость потенциала от координаты – линейная, так как напряженность поля постоянна. Изломы происходят в тех местах, где напряженность поля испытывает скачок.

Заметим, что в данной задаче потенциал не стремится к нулю при . Это, очевидно, связано с тем, что плоскость бесконечна. В действительности размеры реальных пластин всегда ограничены; это приводит к тому, что потенциал падает с увеличением расстояния от пластин.

Задача 4. Две одинаковые параллельные пластины имеют заряды +q и –q. Как меняется разность потенциалов U между пластинами при увеличении расстояния d между ними? Нарисуйте график зависимости U от d.

Пока расстояние между пластинами значительно меньше их размеров, такую систему можно считать плоским конденсатором. Тогда – напряжение линейно растет с расстоянием (начальный участок на рисунке 8).

image005.jpg

Это соответствует тому, что напряженность поля . Как только расстояние между пластинами становится сравнимым с размерами пластин, электрическое поле появляется и вне пространства между пластинами. Тогда становятся существенными так называемые краевые эффекты, и зависимость потенциала от расстояния – довольно сложная. Однако качественно ясно, что, вследствие ослабления поля в области между пластинами, напряжение будет расти медленнее, чем по линейному закону (средний участок на рисунке 8). При дальнейшем увеличении расстояния между пластинами оно станет много больше их размеров. Тогда каждую пластину уже можно считать изолированным телом, и ее потенциал где C0 – емкость уединенной пластины. Таким образом, при очень больших расстояниях разность потенциалов перестает зависеть от расстояния между пластинами (график зависимости U от d. на рисунке 8 имеет горизонтальную асимптоту).

Краевые эффекты часто оказываются существенными при решении электростатических задач, связанных с законом сохранения энергии, рассмотрим, например, такой вариант ускорителя электронов.

Задача 5. В пластинах плоского конденсатора, заряженного до разности потенциалов U сделано сквозное отверстие. Конденсатор помещен в постоянное магнитное поле, направленное перпендикулярно электрическому полю в конденсаторе (рис. 9). Электрон влетает в пространство между пластинами конденсатора, ускоряется, приобретая энергию U вылетает через отверстие и. двигаясь в магнитном поле по окружности, возвращается в конденсатор. Затем он снова ускоряется, движется по окружности большего радиуса, опять входит в конденсатор и т.д. На первый взгляд кажется, что таким образом можно разогнать электрон до больших энергий, то есть создать ускоритель. Так ли это?

Оказывается, такой ускоритель работать не будет – не учтен краевой эффект. Вне конденсатора всегда существует слабое электрическое поле, которое тормозит электрон при егодвижении по окружности. Отрицательная работа поля при этом в точности равна положительной работе при разгоне электрона в конденсаторе: работа в электростатическом поле не зависит от формы траектории. Магнитное поле работы не совершает (сила Лоренца перпендикулярна скорости движения электрона). Поэтому полная работа всех сил, действующих на электрон, при его возвращении в начальную точку будет равна нулю, и кинетическая энергия электрона не изменится. Ускоритель работать не будет.

1. Может ли существовать электростатическое поле, у которого силовые линии – параллельные прямые, а абсолютная величина напряженности меняется только в направлении, перпендикулярном силовым линиям (рис. 10)?

2. Две концентрические металлические сферы радиусов R1 и R2 имеют заряды Q1 и Q2 соответственно. Найдите напряженность и потенциал электрического поля на произвольном расстоянии r от центра сфер. Нарисуйте графики зависимости E от r и φ от r. Рассмотрите случаи одноименных и разноименных зарядов. Как выглядят графики для случая Q1 = –Q2 (сферический конденсатор)?

3. Точечный заряд q окружен металлической сферой радиуса R с зарядом Q. Найдите напряженность поля и потенциал на произвольном расстоянии r от заряда q если он находится в центре сферы; нарисуйте графики зависимости E от r и φ от r. Как изменятся графики, если заряд сместить из центра сферы? Решите ту же задачу для случая, когда металлическая сфера заземлена.

4. Электрон влетает в пространство между пластинами плоского конденсатора так, что его скорость составляет острый угол с направлением силовых линий. Тогда при движении в конденсаторе он будет тормозиться и вылетит с меньшей скоростью; его кинетическая энергии уменьшится. Увеличится ли при этом энергия конденсатора?

5. Два одинаковых конденсатора емкостью C каждый, один из которых заряжен до напряжения U а второй – не заряжен, соединяют параллельно. Найти энергию системы до и после соединения конденсаторов. Почему эти энергии не равны?

6. Точечный заряд q находится вне незаряженной металлической сферы радиуса R на расстоянии d от ее центра. Найти потенциал сферы.

1. Не может, иначе работа по перемещению заряда по замкнутому контуру была бы отлична от нуля.

2. При R1 > r > 0 напряженность E = 0 и ; при R2 > r > R и ; при r > R2и (рис. 11).

image006.jpg

image007.jpg

3. При R > r > 0 напряженность и ; при r > R и (рис. 12).

image008.jpg

image009.jpg

4. Энергия конденсатора не изменяется; изменяется энергия взаимодействия электрона и конденсатора (работа по перемещению электрона в бесконечность из начальной и конечной точек не одна и та же).

5. ровно половина энергии перешло в тепло (независимо от сопротивления подводящих проводов).

6. (потенциал сферы такой же, как в ее центре, а там суммарный потенциал поля индуцированных на сфере зарядов равен нулю).

Потенциальная диаграмма

ads

Потенциальной диаграммой замкнутого контура называется графическая интерпретация распределения электронного потенциала вдоль замкнутого контура в зависимости от входящих в него сопротивлений.

Потребитель энергии отображается на электрической схеме как резистор с заданным сопротивлением R. Если такое элемент присутствует в участке цепи, то изменение потенциалов на концах участка будет соответствовать падению напряжения на этом резисторе.

Если на участке цепи присутствует источник напряжения, то на концах такого участка также будет наблюдаться разность потенциалов, численно равная ЭДС источника.

Построение потенциальной диаграммы

Для построения потенциальной диаграммы, замкнутый контур разбивается на участки таким образом, чтобы каждый из них содержал только одного потребителя или один источник электроэнергии.

Потенциальная диаграмма строится в декартовой системе координат, где по оси абсцисс откладывается, с соблюдением масштаба, сопротивление участков цепи, а по оси ординат – потенциалы точек. Точки замкнутого контура и сопротивления элементов откладываются (отмечаются на диаграмме) в той последовательности, в которой они встречаются при обходе контура.

В начало координат диаграммы помещается точка, потенциал которой условно выбран нулевым.

Демонстрацию алгоритма и правил построения потенциальной диаграммы выполним на примере замкнутого контура abcdef (точки a и f совпадают), представленного на рисунке 1. Положительное направление обхода контура – по часовой стрелке. Для расчетов примем:

Замкнутый контур разбит на участки, каждый из которых содержит либо источник ЭДС, либо резистор.

Примем нулевым потенциал точки а

Следующая точка согласно выбранному направлению движения – b. На участке ab находится источник ЭДС E1. Так как движение на данном участке происходит от отрицательного полюса источника к положительному (направление обхода контура совпадает со стрелкой источника ЭДС), то значение потенциалы на участке повысится на величину E1:

Следующий рассматриваемый участок – bc. На нем происходит уменьшение потенциала на величину падения напряжения на резисторе R1.

Аналогичные процессы происходят на участках cd и de. Следовательно,

На участке ef находится еще один источник ЭДС E2. Движение по данному участку реализуется от отрицательного полюса к положительному, следовательно потенциал повысится на величину E2

Если направление обхода контура не совпадает с направлением ЭДС, тогда ЭДС записывают со знаком минус

Значения потенциалов в точках а и f совпадают , что подтверждает правильность расчетов.

На основании полученных данных можно построить потенциальную диаграмму (рисунок 2).

Рис. 2. Потенциальная диаграмма

Рис. 2. Потенциальная диаграмма

По потенциальной диаграмме легко можно найти разность потенциалов между любыми точками электрической цепи.

Нарисовать графики зависимости напряженности поля и потенциала от координаты x

Задача 3. Две плоскости расположены параллельно друг другу на расстоянии $d$ и заряжены с поверхностной плотностью заряда $\sigma_1$ и $\sigma_2$ соответственно. Нарисовать графики зависимости напряженности поля и потенциала от координаты $x$ (ось $ОХ$ перпендикулярна пластинам). Рассмотреть случаи одноименных и разноименных зарядов на пластинах.

Решение.

Каждая плоскость создает по обе стороны от себя однородное электрическое поле, напряженность которого

Воспользовавшись принципом суперпозиции, для случая одноименных зарядов приходим к графику, показанному на рисунке,

а для разноименных – к графику на рисунке.

Скачки напряженности опять соответствуют общему правилу:

Соответствующие графики для потенциалов показаны на рисунке для одноименных зарядов

и разноименных зарядов

На отдельных участках зависимость потенциала от координаты – линейная, так как напряженность поля постоянна. Изломы происходят в тех местах, где напряженность поля испытывает скачок.

Заметим, что в данной задаче потенциал не стремится к нулю при $x \to \infty$. Это, очевидно, связано с тем, что плоскость бесконечна. В действительности размеры реальных пластин всегда ограничены; это приводит к тому, что потенциал падает с увеличением расстояния от пластин.