Зависимость сопротивления металлических проводников от температуры. Температурный коэффициент сопротивления
Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:
где — удельные сопротивления вещества проводника соответственно при 0°С и t°C; R 0 , R t — сопротивления проводника при 0°С и t°С, — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.
Вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.
где — среднее значение температурного коэффициента сопротивления в интервале .
Читайте также: Механические зажимы DESTACO: преимущества и разновидности
Для всех металлических проводников > 0 и слабо изменяется с изменением температуры. У чистых металлов = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.
Для растворов электролитов 0, например, для 10%-ного раствора поваренной соли = -0,02 К -1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.
Формулы зависимости и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.
Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.
При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.
Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.
Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.
Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.
Металлы
Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.
- Металлическая проволока
- Батарея
- Амперметр
Зависимость указывается и обосновывается формулами:
Из этих формул следует, что R проводника определяется по формуле:
Пример зависимости сопротивления металлов от температуры предоставлен на видео:
Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление. График ниже показывает, как зависит температура и удельное сопротивление в ртути.
Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.
Сверхпроводимость
У некоторых металлов и сплавов наблюдается явление сверхпроводимости, открытое голландским физиком X. Камерлинг-Онессом в 1911 г.
Читайте также: Программируемое реле времени РВ-2с (суточный режим) — установка на DIN-рейку
Оно заключается в том, что при температуре, близкой к абсолютному нулю, электрическое сопротивление резко падает – практически уменьшается до нуля.
Если в замкнутом круге, составленном из сверхпроводника, образуется электрический ток, то он будет циркулировать достаточно длительное время (недели), практически не уменьшаясь.
Температура перехода в сверхпроводящее состояние для различных чистых металлов различна и лежит в интервале от 0,35 К (гафний) до 11,7 К (технеций). Значение этой температуры примерно обратно пропорционально корню квадратному из атомной массы. Сейчас известно 23 чистых металла, обладающих сверхпроводимостью при определенных температурах, а также многие сплавы химических соединений, которые могут переходить в сверхпроводящее состояние. Теорию сверхпроводимости разработали в 1957 г. американские ученые Дж. Бардин, Л. Купер, Дж. Р. Шриффер и независимо от них Μ. Н. Боголюбов. По их теории в сверхпроводящем состоянии электроны проводимости образуют связанные пары; благодаря такой группировке движение совокупности электронов в целом становится устойчивым и не претерпевает обмена энергией с кристаллической решеткой.
Газы
Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.
Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.
Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.
Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ. Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим. Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.
Если приложить напряжение между катодом и анодом, то возникает проводимость газов.
Углеродистые стали
Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10-8 (для стали 08КП) до 20·10-8 Ом·м (для У12).
При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10-8 Ом·м.
Удельное электрическое сопротивление углеродистых сталей ρэ·108, Ом·м
Температура, °С | Сталь 08КП | Сталь 08 | Сталь 20 | Сталь 40 | Сталь У8 | Сталь У12 |
0 | 12 | 13,2 | 15,9 | 16 | 17 | 18,4 |
20 | 13 | 14,2 | 16,9 | 17,1 | 18 | 19,6 |
50 | 14,7 | 15,9 | 18,7 | 18,9 | 19,8 | 21,6 |
100 | 17,8 | 19 | 21,9 | 22,1 | 23,2 | 25,2 |
150 | 21,3 | 22,4 | 25,4 | 25,7 | 26,8 | 29 |
200 | 25,2 | 26,3 | 29,2 | 29,6 | 30,8 | 33,3 |
250 | 29,5 | 30,5 | 33,4 | 33,9 | 35,1 | 37,9 |
300 | 34,1 | 35,2 | 38,1 | 38,7 | 39,8 | 43 |
350 | 39,3 | 40,2 | 43,2 | 43,8 | 45 | 48,3 |
400 | 44,8 | 45,8 | 48,7 | 49,3 | 50,5 | 54 |
450 | 50,9 | 51,8 | 54,6 | 55,3 | 56,5 | 60 |
500 | 57,5 | 58,4 | 60,1 | 61,9 | 62,8 | 66,5 |
550 | 64,8 | 65,7 | 68,2 | 68,9 | 69,9 | 73,4 |
600 | 72,5 | 73,4 | 75,8 | 76,6 | 77,2 | 80,2 |
650 | 80,7 | 81,6 | 83,7 | 84,4 | 85,2 | 87,8 |
700 | 89,8 | 90,5 | 92,5 | 93,2 | 93,5 | 96,4 |
750 | 100,3 | 101,1 | 105 | 107,9 | 110,5 | 113 |
800 | 107,3 | 108,1 | 109,4 | 111,1 | 112,9 | 115 |
850 | 110,4 | 111,1 | 111,8 | 113,1 | 114,8 | 117,6 |
900 | 112,4 | 113 | 113,6 | 114,9 | 116,4 | 119,6 |
950 | 114,2 | 114,8 | 115,2 | 116,6 | 117,8 | 121,2 |
1000 | 116 | 116,5 | 116,7 | 117,9 | 119,1 | 122,6 |
1050 | 117,5 | 117,9 | 118,1 | 119,3 | 120,4 | 123,8 |
1100 | 118,9 | 119,3 | 119,4 | 120,7 | 121,4 | 124,9 |
1150 | 120,3 | 120,7 | 120,7 | 122 | 122,3 | 126 |
1200 | 121,7 | 122 | 121,9 | 123 | 123,1 | 127,1 |
1250 | 123 | 123,3 | 122,9 | 124 | 123,8 | 128,2 |
1300 | 124,1 | 124,4 | 123,9 | — | 124,6 | 128,7 |
1350 | 125,2 | 125,3 | 125,1 | — | 125 | 129,5 |
Жидкости
Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.
Зависимость воздействия электролитов от нагревания прописывает формула:
Где а – отрицательный температурный коэффициент.
Как зависит R от нагрева (t) показано на графике ниже:
Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.
Читайте также: Установки для прожига места повреждения силовых кабелей
Медные датчики (ТСМ)
Применение этого материала обеспечивает ценовую доступность датчиков. Для корректного анализа специалисты рекомендуют уточнять, как зависит сопротивление проводника от температуры. Электротехническая медь содержит менее 0,1% посторонних примесей, что позволяет поддерживать линейные характеристики во всем рабочем диапазоне.
Технические параметры серийных изделий:
- измерение температуры – от -50°C до +150°C;
- Тк = 0,00617 °C-1.
Полупроводники
А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.
Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.
Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:
- если температура элемента меньше нуля, то такие проводники используются в качестве реле;
- чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.
Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.
Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том, .
Такое устройство носит название термопары. Термоэлементы применяются как источники тока малой мощности, а также для измерения температур цифрового вычислительного прибора, у которых размеры должны быть маленькие, а показания точные.
Подробнее о полупроводниках, и влияние нагрева на их сопротивление рассказывается на видео:
Ну и последнее, о чем хотелось бы рассказать — холодильники и полупроводниковые нагреватели. Полупроводниковые спаи обеспечивают в конструкции разность температур до шестидесяти градусов. Благодаря этому и был сконструирован холодильный шкаф. Температура охлаждения в такой камере достигает – 16 градусов. В основу работы элементов лежит применение термоэлементов, через которые проходит электрический ток.
Сопротивление металлов связано с тем, что электроны, движущиеся в проводнике, взаимодействуют с ионами кристаллической решетки и теряют при этом часть энергии, которую они приобретают в электрическом поле.
Опыт показывает, что сопротивление металлов зависит от температуры. Каждое вещество можно характеризовать постоянной для него величиной, называемой температурным коэффициентом сопротивления α
.
Этот коэффициент равен относительному изменению удельного сопротивления проводника при его нагревании на 1 К: α =
где ρ 0 — удельное сопротивление при температуре T 0 = 273 К (0°С), ρ — удельное сопротивление при данной температуре T. Отсюда зависимость удельного сопротивления металлического проводника от температуры выражается линейной функцией: ρ = ρ 0 (1+ αT).
Зависимость сопротивления от температуры выражается такой же функцией:
Температурные коэффициенты сопротивления чистых металлов сравнительно мало отличаются друготдруга и примерно равны 0,004 K -1 . Изменение сопротивления проводников при изменении температуры приводит к тому, что их вольт-амперная характеристика не линейна. Это особенно заметно в тех случаях, когда температура проводников значительно изменяется, например при работе лампы накаливания. На рисунке приведена ее вольт — амперная характеристика. Как видно из рисунка, сила тока в этом случае не прямо пропорциональна напряжению. Не следует, однако, думать, что этот вывод противоречит закону Ома. Зависимость, сформулированная в законе Ома, справедлива только при постоянном сопротивлении.
Зависимость сопротивления металлических проводников от температуры используют в различных измерительных и автоматических устройствах. Наиболее важным из них является
термометр сопротивления
. Основной частью термометра сопротивления служит платиновая проволока, намотанная на керамический каркас. Проволоку помещают в среду, температуру которой нужно определить. Измеряя сопротивление этой проволоки и зная ее сопротивление при t 0 = 0 °С (т. е.
R 0),
рассчитывают по последней формуле температуру среды.
Сверхпроводимость.
Однако до конца XIX в. нельзя было проверить, как зависит сопротивление проводников от температуры в области очень низких температур. Только в начале XX в. голландскому ученому Г. Камерлинг-Оннесу удалось превратить в жидкое состояние наиболее трудно конденсируемый газ — гелий. Температура кипения жидкого гелия равна 4,2 К. Это и дало возможность измерить сопротивление некоторых чистых металлов при их охлаждении до очень низкой температуры.
В 1911г работа Камерлинг-Оннеса завершилась крупнейшим открытием. Исследуя сопротивление ртути при ее постоянном охлаждении, он обнаружил, что при температуре 4,12 К сопротивление ртути скачком падало до нуля. В дальнейшем ему удалось это же явление наблюдать и у ряда других металлов при их охлаждении до температур, близких к абсолютному нулю. Явление полной потери металлом электрического сопротивления при определенной температуре получило название сверхпроводимости.
Не все материалы могут стать сверхпроводниками, но их число достаточно велико. Однако у многих из них было обнаружено свойство, которое значительно препятствовало их применению. Выяснилось, что у большинства чистых металлов сверхпроводимость исчезает, когда они находятся в сильном магнитном поле. Поэтому, когда по сверхпроводнику течет значительный ток, он создает вокруг себя магнитное поле и сверхпроводимость в нем исчезает. Всё же это препятствие оказалось преодолимым: было выяснено, что некоторые сплавы, например ниобия и циркония, ниобия и титана и др., обладают свойством сохранять свою сверхпроводимость при больших значениях силы тока. Это позволило более широко использовать сверхпроводимость.
Сопротивление проводников зависит от вещества, из которого они из-готовлены, и их геометрических размеров
R =
ρ .l /S,
где ρ
— удельное сопротивление вещества, из которого изготовлен проводник;
l
—длина проводника;
S —
площадь попереч-ного сечения проводника.
Читайте также: Новый класс датчиков переменного тока на основе катушек Роговского
Сопротивление проводников входит в за-кон Ома для однородного участка цепи I =
U /R
, из которого и может быть определено
R =U /I
.
Из последней формулы выходит, что со-противление проводника постоянно, посколь-ку, в соответствии с законом Ома, во сколь-ко раз увеличиваем напряжение на концах проводника, во столько же раз возрастает и сила тока в нем.
Но на практике можно наблюдать и дру-гие явления. Составим электрическую цепь, схема которой показана на рис. 7.2. В этой цепи есть источник тока с регулированным напряжением, электрическая лампа, напри-мер автомобильная, вольтметр и амперметр, показывающие напряжение на лампе и силу тока в ней. Устанавливаем на лампе напря-жение U 1
и отмечаем силу тока
I 1 .
Если теперь увеличить напряжение, например в 2 раза
(U 2 =
2
U 1),
то по закону Ома и сила тока должна увеличиться в 2 раза (
I 2
= 2
I 1).
Однако амперметр показывает силу тока значительно меньшую, чем 2
I 1
. Следова-тельно, в данном случае
закон Ома не вы-полняется.
Возникло несоответствие между вашими предшествующими знаниями и новым для вас фактом — закон Ома не всегда справед-лив. Такое несоответствие в науке назы-вается проблемой.
Проблема
(гр. — задача, затруд-нение) — сложный теоретиче-ский или практический вопрос, требующий решения.
Можно высказывать разные предположе-ния, что является попыткой объяснить на-блюдаемое явление. Однако в ходе опыта бро-сается в глаза, что при увеличенном напря-жении лампа светится ярче, чем в первом слу-чае. Это является свидетельством того, что тем-пература спирали лампы во втором случае вы-ше, чем в первом. Возможно, именно измене-ние температуры является причиной изменения сопротивления металлической спирали лампы.
Как же можно проверить такое предпо-ложение (гипотезу)? Составляем электриче-скую цепь (рис. 7.3), в которой есть метал-лический проводник в виде спирали, на-пример пружинка от шариковой ручки, и устанавливаем в цепи ток определенной си-лы. Нагревая спираль в пламени свечи или спички, заметим:
при нагревании спирали и при постоянном напряжении сила тока в цепи уменьшается, что свидетельствует об увеличении сопротивления спирали при по-вышении ее температуры.
Тщательные исследования показывают, что сопротивление металлических проводников зависит от их температуры практически ли-нейно
R =
R 0 (
1
+αt°),
где R 0
— сопротивле-ние проводника при 0 °C или +20 °C (это удобнее для техники). График такой зави-симости представлен на рис. 7.4.
Если иметь в виду, что размеры металлов при нагревании изменяются мало, то со-ответствующую формулу можно записать и для удельного сопротивления металлических проводников
ρ =
ρ 0 (
1
+αt°).
Рассмотрим, что означает коэффициент в полученных формулах. Если при 0°C со-противление проводника R 0 ,
а при
t°
C со-противление его
R,
то относительное изме-нение сопротивления, как показывает эксперимент,
(R —R 0) /R 0 =αt°
C. Материал с сайта
Коэффициент пропорциональности назы-вается температурным коэффициентом со-противления
, который характеризует зави-симость сопротивления вещества от его тем-пературы.
Температурный коэффициент сопро-тивления
равен относительному изменению сопротивления проводника при изменении его температуры на 1 К.
Для всех металлических проводников α
> 0 и мало зависит от тем-пературы.
Почему же возрастает сопротивление ме-таллических проводников с повышением температуры? Дело в том, что при нагре-вании металла возрастает интенсивность ко-лебаний ионов кристаллической решетки и скорость хаотического движения электро-нов.
Электроны чаще сталкиваются с ионами, что и уменьшает скорость их направленного движения, которое и является электричес-ким током.
В технике зависимость сопротивления металлических проводников от температуры используется в термометрах сопротивления.
Датчик температуры (например, платиновая проволочка) устанавливается в тех точках, где необходимо измерять температуру, а его сопротивление измеряют омметром, шкала которого градуируется в единицах темпера-туры. Таких датчиков, при необходимости, может быть любое количество, а измери-тельный прибор — один.
На этой странице материал по темам:
График зависимости сопротивления от температуры в вакууме
Зависимость сопротивления от температуры для вакуума
Зависимость сопротивления в вакууме от температуры
Зависимость сопротивления металлических проводников от температуры
От чего зависит величина сопротивления R ?
Дальнейшие эксперименты показали, что:
- Величина R прямо пропорциональна длине проводника, то есть чем больше длина проводник L, тем больше тем больше его сопротивление, причем зависимость линейная, то есть R∼ L;
- Величина R , обратно пропорциональна поперечной площади проводника S, то есть $ R ∼ <1\over S >$;
- Поскольку у проводников из разных материалов с одинаковыми размерами S и L сопротивления отличались, то была введена физическая величина, названная удельным сопротивлением ρ.
Рис. 1. Проводник длиной L, поперечным сечением S и током I
Тогда выражение для величины сопротивления приобрело следующий вид:
Из уравнения (2) можно получить формулу удельного сопротивления проводника:
Пользуясь формулой (3), можно дать следующее определение: удельное сопротивление — это величина, равная сопротивлению проводника длиной один метр с площадью поперечного сечения в один метр квадратный. Тогда в Международной системе СИ получаем для ρ размерность [Ом*м]:
Оказалось, для практического применения величину ρ удобнее определить как сопротивление проводника длиной один метр с площадью поперечного сечения в один миллиметр квадратный.
Тогда числовые значения ρ, становятся более удобными для восприятия. Например, удельное сопротивление железа ρж = 130000 (Ом*м) = 0,13 (Ом*мм2)/м. В справочниках данные приводятся в этом в последнем, более компактном представлении.
Хромистые нержавеющие стали
Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10-8 Ом·м.
Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·108, Ом·м
Марка стали | 20 | 100 | 300 | 500 | 700 | 900 | 1100 | 1300 |
Х13 | 50,6 | 58,4 | 76,9 | 93,8 | 110,3 | 115 | 119 | 125,3 |
2Х13 | 58,8 | 65,3 | 80 | 95,2 | 110,2 | — | — | — |
3Х13 | 52,2 | 59,5 | 76,9 | 93,5 | 109,9 | 114,6 | 120,9 | 125 |
4Х13 | 59,1 | 64,6 | 78,8 | 94 | 108 | — | — | — |
Зависимость электрического сопротивления от температуры
При проектировании электрических схем, инженеры сталкиваются с тем, что проводники обладают определенным сопротивлением, на которое оказывают влияния температурные колебания. Статья даст подробное описание, что такое зависимость сопротивления от температуры и как температура влияет на проводимость различных веществ — металлов, газов и жидкостей. Дополнительно будет приведена формула расчета такой зависимости.
Сопротивление
Сопротивлением называется способность проводника пропускать через себя электрический ток. Единицей измерения данной физической величины является Ом. На принципиальных схемах эта величина обозначается буквой «R». На величину сопротивления любого проводника электрическому току влияет его структура. Двигаясь внутри структуры, свободные электроны сталкиваются с атомами и электронами, которые замедляют их движение. Чем их концентрация больше, тем выше будет само электрическое сопротивление.
О способности проводников проводит электрический ток судят по величине его удельного сопротивления. Удельное сопротивление проводника — это сопротивление протеканию тока через проводник из любого вещества с площадью поперечного сечения 1 м² и длиной один метр. Обозначается в физике данная величина буквой «ρ». Данный параметр является табличной величиной и измеряется в системе СИ как Ом×м (может также измеряться в Ом×см и Ом×мм²/м).
Коэффициент сопротивления
Во время работы электрических цепей прослеживается прямая зависимость сопротивления металлов от температуры. Это явление называют коэффициентом температурного сопротивления. Оно определяет соотношение сопротивления к температурным изменениям. Объясняется это явление следующим образом: с повышением температуры структура проводника получает долю тепловой энергии, вследствие чего эта энергия увеличивает скорость движения атомов. В результате повышается вероятность их столкновения со свободными электронами. Чем чаще происходят эти столкновения, тем ниже будет проводимость.
Можно провести простой опыт: в электрическую схему из аккумулятора и омметра подключим кусок медной проволоки. При таком подключении схема будет иметь строго определенное значение сопротивления. Далее надо будет нагреть медную проволоку. В момент нагрева можно заметить, что сопротивление всей схемы растет, а после остывания проводника оно наоборот уменьшается. На основании такого опыта довольно просто прослеживается температурная зависимость сопротивления проводника.
Температурный коэффициент отображает увеличение сопротивления при изменении температуры вещества на 1 градус. Для максимально чистого металла это значение равняется 0.004 °С -1 . То есть, при увеличении температуры на 10 градусов, электрическая проводимость в металлах изменится на 4 % в большую сторону. Данная величина обозначается буквой «α». При расчете сопротивления через удельное сопротивление используется такая формула:
В данной зависимости:
- «R» — сопротивление, Ом;
- «l» — длина проводника, м;
- «s» — поперечное сечение проводника, м²;
- «ρ» — значение удельного сопротивления, Ом×м.
Зависимость проводимости металлического проводника от температуры можно проследить с помощью таких выражений:
Для металлов все предельно просто — изменение температуры приводит к увеличению его сопротивления. Ниже будет дано описание этой зависимости для газов, которые по своей природе являются диэлектриками.
Для закрепления материала, решим следующую задачу:
Имеется стальной проводник, диаметр которого равен один миллиметр, а длина его составляет 100 метров. Определите сопротивление такого проводника из стали, если величина удельного сопротивления стального проводника составляет 12×10 -8 Ом×м.
Определяем сопротивление проводника по формуле:
где S является площадью поперечного сечения. Определить площадь можно с помощью формулы:
S= π×r 2 = π×d 2 /2 2 =3.14×(1×10 -3 ) 2 /4=3.14×10 -6 /4=0.785×10 -6 м 2
После этого можно определить сопротивление:
R=12×10 -8 ×100/(0.785×10 -6 )=15.287 Ом
Газы
Газы не являются проводниками, но их проводимость так же зависит от температуры. Происходит это за счет так называемого эффекта ионизации. Ионизация в газах происходит за счет насыщения их жидкостью или иными веществами, которые способны проводить электрический ток. Проследить то, как увеличивается сопротивление при повышении температуры газа можно на таком опыте.
К схеме с амперметром и аккумулятором добавим 2 металлические пластины, которые не соприкасаются друг с другом. Такая электрическая цепь является разомкнутой. Между пластинами поместим зажженную горелку. При нагреве происходит смещение стрелки амперметра в сторону увеличения. То есть такую цепь можно считать замкнутой. На основании этого можно сделать вывод, что с ростом температуры воздух ионизируется, происходит снижение его сопротивления и увеличение проводимости заряженных электронов. Данный эффект называют пробоем изоляционного слоя газа, зависящий от степени их ионизации и величины протекающего напряжения. Подобное явление знакомо каждому из нас — это грозовой разряд.
Жидкости
В жидкостях прослеживается обратная зависимость. С увеличением температуры, сопротивление жидкого проводника уменьшается. Для электролита свойственно правило отрицательного значения температурного коэффициента — а˂0. Удельное сопротивление электролита рассчитывается следующим образом:
При этом увеличившееся значение температуры электролита сопровождается уменьшением сопротивления и ростом его проводимости.
Сверхпроводимость
Снижение температуры металлических проводников сильно увеличивает их проводимость. Это связано с тем, что в структуре вещества замедляется движение атомов и электронов, благодаря чему снижается вероятность их столкновения со свободными электронами. При температуре абсолютного 0 (–273 градуса Цельсия) возникает явление падения до нуля сопротивления проводника. Зависимость сопротивления проводника от температуры при абсолютном 0 — сверхпроводимость.
Температура, при которой обычный проводник становится сверхпроводником, называется критической. Она будет разной для различных чистых металлов и сплавов. Все будет зависеть от их структуры, химического состава и структуры кристаллов. Например, серое олово с алмазной структурой является полупроводником. Но белое олово при своей тетрагональной кристаллической ячейке, мягкости и плавкости, переходит в состояние сверхпроводника при температуре 3.70 К. Также при критической температуре прослеживается целый ряд других способностей:
- Повышение частоты переменного тока вызывает рост сопротивления, значение гармоник с периодом световой волны.
- Способность удерживать величину силы тока ранее приложенного, а затем отключенного источника.
Металл или сплав может перейти в состояние сверхпроводника и при нагревании. Такое явление называют высокотемпературной проводимостью. Ответ на вопрос, почему от высокой температуры сопротивление металлов снижается, может довольно просто объяснить их кристаллическая структура. В момент нагрева до критических значений, электроны перестают хаотично перемещаться внутри структуры вещества. Они выстраиваются в цепочку. Такое построение не мешает движению свободных электронов, а значит падает общее сопротивление. Переход в состояние высокотемпературной проводимости начинается с порога 1000К и этот показатель выше, чем точка кипения азота.
Применение
Свойство проводников изменять сопротивление при определённой температуре используют для создания различных элементов электрических схем и измерительных приборов. О них будет рассказано далее в данной статье.
Резистор
Сопротивление устройств старого типа сильно зависело от их нагрева. При нагревании проводимость резистора пропорционально изменялась в меньшую сторону. Для электрических цепей требуется идеальный резистор, который обладает наивысшим коэффициентом проводимости. Для снижения нагрева при производстве данных устройств теперь используется материал, имеющий малую зависимость сопротивления от температуры нагрева. Это позволило применять резисторы с малым сопротивлением для цепей с большим напряжением.
Терморезистор
Существует отдельная группа резисторов, которые применяют для измерения температуры. Особенностью такого устройства является то, что он может снижать свою проводимость при нагреве. При этом он отключает цепь при достижении определенного порогового значения.
Термометр сопротивления
Это прибор был разработан для измерения температуры среды. Он состоит из тонкой платиновой проволоки, защитного чехла и корпуса. Прибор имеет стабильную реакцию на перепады температуры. Измеряемой величиной в данном устройстве служит сопротивление этой проволоки из платины. Чем выше будет температура, тем сопротивление соответственно будет больше. Понижение сопротивления так же фиксируется, так как в этот момент меняются проводимость и сопротивление. Для измерения температуры термометром сопротивления, в настоящее время применяются проволочные индикаторы из разнообразных металлов. В зависимости от свойств используемого металла, погрешность устройства может составлять не более 0.1 %. Благодаря этому достигается очень высокая точность измерения температуры.
Газ
Самый известный нам газовый проводник — это люминесцентная лампа. Газ нагревается за счет увеличения напряжения между анодом и катодом лампы.
Известным жидкостным проводником является щелочной аккумулятор. При понижении температуры нарушается структура жидкости и изменяется ее сопротивление.
Нагрев провоцирует движение атомов и электронов, увеличивая сопротивление и зарядный ток устройства.
Заключение
В данной статье мы рассмотрели, как зависит сопротивление от температуры. Металлы, газы и жидкости имеют свойства изменять свою проводимость и сопротивление при температурных перепадах. Это свойство изменения электрического сопротивления используются для измерения температуры среды. Наибольшая точность измерений температуры в настоящее время достигается за счет применения современных материалов, даже в бытовой технике.
Видео по теме