Значение напряжения при кз

Что такое ток короткого замыкания и петля фаза-ноль

Сегодня будет статья о токе короткого замыкания и сопротивлении петли фаза-ноль. Разберёмся, как эти понятия связаны между собой, и какую ценность имеет эта информация для практикующего электрика. С одной стороны – всё можно объяснить на законе Ома, с другой – это очень и очень обширная тема, и я не знаю, хватит ли одной статьи. Скажу сразу, что я не претендую на полноту изложения информации. Поэтому в конце, как всегда, будут выложены для скачивания несколько хороших книг на тему статьи.

Что такое короткое замыкание?

Многие знают такое устойчивое выражение – “короткое замыкание”. Кроме названия известного блокбастера из 90-х, эти слова ассоциируются у обывателя с частой причиной пожаров. На эту тему гуляет множество мифов и штампов. Я решил разобраться, что тут к чему и зачем всё это нужно. Короткое замыкание (КЗ) – это такой режим работы электросети, или явление, при котором в цепи в месте замыкания протекает максимально возможный ток. Это событие – трудно предсказуемое и аварийное, и чем быстрее оно прекратится, тем лучше. При возникновении КЗ вся энергия источника питания тратится только на нагрев проводов. Кроме того, возможны динамические (механические) последствия. Процесс этот обычно очень скоротечный и взрывообразный, поскольку тепловая энергия выделяется колоссальная. Если не прекратить это безобразие как можно быстрее (какими способами это делается – разберёмся ниже), то КЗ может привести к большим материальным и человеческим потерям.

Время отключения автоматических выключателей бытовых серий при КЗ на землю должно быть менее 0,4 с (ПУЭ 1.7.79, 7.1.72). Если скорость не обеспечивается из-за низкого тока КЗ, выключение должно происходить посредством устройств, реагирующих на дифференциальный ток (УЗО, АВДТ), время реакции будет (согласно ГОСТ) менее 0,04 с.

Замыкание может происходить между любыми точками электрической цепи, обладающими разным потенциалом. Вот как это выглядит в трехфазном варианте:

Короткие замыкания в системе TN-S

Короткие замыкания в системе питания с системой заземления TN-S. Кто увидит ошибку на схеме?

  • двух- и трехфазные (межфазные),
  • одно- двух- или трехфазные на нейтральный N или защитный РЕ проводник.

Если рассматривать наиболее безопасную систему заземления TN-S с глухозаземленной нейтралью трансформатора, то наиболее часто (на практике – около 90%) встречается однофазное замыкание между фазным проводом и нейтралью N (либо защитным проводником РЕ). Поэтому далее будет рассматривать более простой, однофазный вариант:

замыкание на нейтральный и защитный

Короткое замыкание на нейтральный и защитный проводники

Замыкание может произойти где угодно – хоть около трансформаторной подстанции (ТП) из-за невнимательности экскаваторщика, хоть в квартире из-за кота, уронившего ёлку. В любом случае, защита должна отработать чётко, сведя к минимуму последствия КЗ.

Кстати, у нас однажды кошка уронила ёлку. Выкинули её с 5-го этажа.

Причины короткого замыкания

СамЭлектрик.ру в социальных сетях:

Подписывайтесь! Там тоже интересно!

КЗ может возникнуть по разным причинам, основная из которых – нарушение изоляции или взаимного расположения токоведущих частей. Очень часто в возникновении КЗ виноват человеческий или природный фактор.

Пример, который оценят женщины (чудо, если они будут читать эту статью) – из-за постоянных перегибов ухудшается изоляция, и в один “прекрасный” момент фен или утюг “бахают” на вводе или около вилки.

Другой пример – из-за механической поломки или внешнего воздействия токоведущие части по какой-то причине оказываются слишком близко друг к другу, вплоть до полного соприкосновения. Это может случиться из-за природных явлений (упало дерево на провода), ударов, падений электроприборов.

Ну и классический пример – КЗ из-за вмешательства в электропроводку домашних “мастеров на все руки”. По законам жанра, у мастера после этого инцидента обязательно должны стоять дыбом волосы, а лицо быть черным. Мне от таких картинок не смешно – всё происходит по другому.

Как избежать КЗ?

Понятно, что полностью избежать этого неприятного явления невозможно – тут велик элемент случайности. Однако, в наших силах существенно снизить риск возникновения КЗ. И тут колоссальное значение приобретает регулярный осмотр и техническое обслуживание электросетей.

Примеры превентивных мер:

  • чистка токоведущих частей, контактов и изоляторов от пыли и грязи,
  • проверка защиты от влажности,
  • проверка целостности укладки и монтажа,
  • ограждение и дополнительная защита опасных участков,
  • вывешивание и наклеивание предупреждающих табличек и надписей,
  • проверка и протяжка контактов,
  • обрезка деревьев и устранение других опасных факторов.

Как думаете, какие нужны превентивные меры защиты от КЗ на фото ниже?

Водосточная труба

Водосточная труба, электрощиты и гофра, уходящая под плитку. Инсталляция в старой части Батуми

В серьезных организациях регулярно проводят проверку кабелей и контактов тепловизором, а также измерение сопротивления изоляции и испытания изоляции высоковольтным напряжением.

Замыкание и перегрузка

Чем отличаются эти два явления – короткое замыкание и перегрузка?

В электрической цепи можно выделить 4 принципиально разных режима, которые отличаются по току потребления:

  1. Режим холостого хода. Ток равен нулю, напряжение номинальное, потерь на проводах никаких нет. Розетка, к которой ничего не подключено, работает как источник напряжения в режиме холостого хода.
  2. Номинальный режим. Иначе – нормальный режим, когда мощность нагрузки не превышает расчетную. В этом режиме всё хорошо, мы спокойно наслаждаемся благом электрификации страны. “Просадка” напряжения если и будет, то незначительная – единицы процента.
  3. Режим перегрузки. В этом режиме ток может незначительно (на десятки процентов) либо в несколько раз (на сотни процентов) превышать номинальный. Перегрузка может произойти из-за частичного ухудшения изоляции, превышения суммарной мощности подключенных потребителей, либо из-за неисправности внутри отдельного электроприбора (например, межвитковое замыкание либо заклинивание электродвигателя, или замыкание внутри ТЭНа).
  4. Режим короткого замыкания. Это самый тяжелый, разрушительный режим с большим выделением тепла. Ток в месте замыкания – максимально возможный для данных условий. Другие побочные эффекты КЗ – понижение напряжения у других потребителей (как из-за пониженного напряжения сгорели новые немецкие холодильники на областном складе “Магнита”) и асимметрия фаз (к чему приводит асимметрия (перекос) фаз и как от этого защититься).

То есть, перегрузка от короткого замыкания отличается величиной сверхтока. При КЗ ток становится максимально возможным в данной точке цепи, а при перегрузке значение тока больше номинального, но меньше тока КЗ.

Любые токи выше номинального называются сверхтоком.

Из-за перегрузки может легко возникнуть КЗ – провода греются, изоляция плавится, и так далее, со всеми вытекающими, стреляющимися и взрывающимися последствиями.

Не стоит путать перегрузку, короткое замыкание и искрение (дуговой пробой). Если первые два понятия отличаются значением сверхтока, то при последовательном дуговом пробое (например, ослабла затяжка клеммы в розетке) действующее значение тока может быть совсем незначительным (единицы ампер), что не вызовет срабатывания ни автоматического выключателя, ни УЗО. Спасти ситуацию от пожара сможет лишь Устройство защиты от искрения (от дугового пробоя), которое ещё встречается сравнительно редко.

По таким устройствам у меня на блоге несколько статей, вот последняя на сегодняшний день.

Чем определяется напряжение и ток при коротком замыкании?

Выше я сказал, что КЗ может произойти в любой точке линии. Давайте разбираться, как будет зависеть ток и напряжение в зависимости от места КЗ.

Короткое замыкание – это физическое явление. Ток короткого замыкания – это параметр питающей электросети, измеряемый в амперах или килоамперах (кА).

Немецкий физик Ом со школьных лет учит нас, что напряжение и ток определяются через сопротивление цепи:

Закон ома, простейший вид

Ток короткого замыкания, как и любой ток, тоже рассчитывается по закону Ома и зависит от напряжения и сопротивления на данном участке цепи. Поскольку сопротивление проводов в реальной жизни – это не только то, что показывает мультиметр, но и индуктивная составляющая, закон Ома для тока КЗ запишем в более общем виде:

В числителе U – номинальное напряжение в сети (напряжение холостого хода на выходе трансформатора на ТП). Число, которое получается при расчетах в знаменателе – полное сопротивление цепи Z, от которого и зависит ток КЗ. Рассмотрим схему однофазного питания квартиры и реальный случай КЗ с замкнувшим феном:

Замыкание в конце питающей линии

Замыкание в конце питающей линии (ток КЗ минимальный)

В схеме обозначены полные сопротивления различных участков питающей сети:

  • Z1 – внутреннее сопротивление трансформатора на подстанции с учетом пересчитанного сопротивления высоковольтной части,
  • Z2 – кабельная линия от ТП к распределительному пункту (РП) многоквартирного дома,
  • Z3 – кабельная линия от РП до квартирного щитка,
  • Z4 – кабель от щитка до розетки в одной из комнат,
  • Z5 – переноска от розетки до замкнувшего фена.

Фен сгорел и устроил КЗ

Фен сгорел и устроил короткое замыкание

Вот как может выглядеть график уровня напряжения на разных участках – от клемм трансформатора на подстанции до замкнувшей вилки фена:

Понижение напряжения

Понижение напряжения до нуля в результате КЗ в конце линии

Падение напряжения сопровождается выделением тепла на всех участках питающей линии. На мощных участках с большим сечением проводов доля “квартирного” тока КЗ ничтожна, поэтому там падение небольшое (участки с сопротивлением Z1, Z2).

Статья про падение напряжения. Расчет в низковольтных цепях и в цепях постоянного тока, без учета реактивной составляющей.

В связи с понижением напряжения в результате КЗ можно отметить, что это будет заметно на параллельных нагрузках, подключенных например к тому же РП. При КЗ или сильной перегрузке у одного из потребителей лампочки в соседних домах и подъездах станут гореть тусклее. Бывало?

А вот как может выглядеть изменение тока КЗ от источника до места замыкания:

Уменьшение тока

Уменьшение тока при удалении от источника электроэнергии

Типичное значение тока КЗ на клеммах трансформатора мощностью до 1000 кВА, которые применяются для питания городских потребителей – порядка 10 кА. А вот в розетках наших квартир ток КЗ может составлять значение порядка 1000 А. В частном секторе и сельских районах значение тока КЗ может быть гораздо меньше – до 100 А.

Трансформатор на подстанции

Трансформатор на подстанции 10000/0,4 кВ мощностью 1000 кВА с глухозаземленной нейтралью вторичной обмотки. Примерно от таких питаются наши “районы, кварталы, жилые массивы”.

Расчетное значение тока КЗ

Как же узнать ток КЗ? Казалось бы – что трудного? Подставляем значения в формулу и считаем!

Однако, полный расчет тока КЗ весьма сложен, и ему можно посвятить курсовой, а то и дипломный проект. При этом нужно знать много исходных данных (например, мощность трансформатора на ТП и индуктивное сопротивление всех участков кабельных линий), и всё равно результат будет теоретическим, не учитывающим реальность – например, переходные сопротивления контактов. Важно учитывать и то, что при КЗ действуют две составляющие тока: апериодическая (ударная часть, наиболее мощная и непредсказуемая), действующая только в начальный момент во время переходного процесса, и периодическая, которая практически не меняет своего значения от начала до конца инцидента.

Поэтому расчеты обычно оставляют дипломникам и проектировщикам, а на практике измеряют фактический ток КЗ при помощи специальных приборов. Для более точного расчета можно воспользоваться книгами, выложенными в конце статьи, либо программами для расчета.

Как измерить ток короткого замыкания?

Для измерения тока КЗ в продаже есть много профессиональных приборов различных производителей, по цене от 10 тыс. рублей. Все они прекрасно справляются со своей задачей.

Замечательно, что есть и бытовое исполнение на ДИН-рейку – например, ВРТ-М02 от фирмы Меандр. Прибор имеет размеры автоматического выключателя, имеет необходимые настройки и индикацию напряжения. При понижении тока КЗ ниже порога срабатывает индикация. Хочу себе такой.

Что делать, если измеренный ток КЗ слишком низкий?

Допустим, мы измерили прибором и получили значение тока КЗ в розетке (как правило, измерение проводят в самой удалённой точке). Как понять, что этот ток – слишком низкий? Это оценивается по критерию гарантированного срабатывания электромагнитного расцепителя автоматического выключателя в измеренной цепи. Логично, что для этого ток КЗ должен быть больше, чем верхний предел диапазона расцепления. Напоминаю, для характеристики “В” разброс 3…5 In, для “С” – 5…10 In, для “D” – 10…20 In. Чтобы сказать точнее, обратимся в ПУЭ (п.7.3.139):

7.3.139. В электроустановках до 1 кВ с глухозаземленной нейтралью в целях обеспечения автоматического отключения аварийного участка проводимость нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или нулевой защитный проводник возникал ток КЗ, превышающий не менее чем в 4 раза номинальный ток плавкой вставки ближайшего предохранителя и не менее чем в 6 раз ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (без выдержки времени), следует руководствоваться требованиями, касающимися кратности тока КЗ и приведенными в 1.7.79.

Как я понял, в первой части 7.3.139 говорится только о тепловом расцепителе – его номинальный ток должен быть по крайней мере в 6 раз меньше тока КЗ. Во второй части этого пункта, а также в п.1.7.79 говорится о максимальном времени отключения при КЗ (0,4 с), которое должно быть обеспечено только электромагнитным расцепителем. При этом четко не указано о выборе АВ с учетом его характеристики отключения.

Из-за этой расплывчатости формулировки пользуются правилом, изложенным в ПТЭЭП (проверка срабатывания защиты при системе питания с заземленной нейтралью, п.28.4), где говорится о том, что при замыкании на нулевой защитный проводник ток КЗ должен быть не менее “1,1 верхнего значения тока срабатывания мгновенно действующего расцепителя”.

То есть, для автомата В10 ток КЗ в конце линии, которую он защищает, должен быть не менее 10х5х1,1 = 55 А. Если же установлен автомат С25, ток КЗ должен быть не менее 25х10х1,1 = 275 А.

Если же ток КЗ меньше, допустимое время срабатывания отнюдь не гарантируется. Что же делать? Тут два выхода:

  1. увеличивать ток КЗ, для этого нужны затраты на прокладку новой питающей линии (по крайней мере, её самого слабого звена),
  2. уменьшать номинал автомата (например, 25 А на 16) и букву характеристики отключения (с “С” на “В”) в ущерб максимальной мощности нагрузки.

Читайте подробнее, почему для групповых автоматов всегда предпочтительнее ставить не “С”, а “В”.

Что такое петля “Фаза-ноль” и как она связана с током КЗ?

Петля “Фаза-ноль” (или Фаза-нУль, можно и так) – это цепь, или контур, по которому проходит ток от источника напряжения через нагрузку обратно в источник. Сопротивление петли “Фаза-ноль” обратно пропорционально току КЗ, измеряется в Омах:

Иными словами, два этих понятия связаны так же, как ток и сопротивление в законе Ома – одно можно рассчитать из другого, зная напряжение (в данном случае это номинальное напряжение 230 В).

Зачем нужно знать значения тока КЗ и сопротивления петли “Фаза-ноль”?

Я уже много чего рассказал в статье. Но какой нам толк от знания этих параметров электросети?

Знание тока КЗ (или сопротивления петли “Фаза-ноль”) и мощности нагрузки позволяет нам правильно и оптимально (по соотношениям безопасность/функциональность/надежность/цена) выбрать основные элементы энергосистемы – аппараты защиты и сечение кабелей. Далее немного подробнее.

Безопасность

Об этом я уже говорил, но повторю. Электрические сети должны быть безопасными на всех участках и во всех режимах. Для этого, кроме изоляции, применяют автоматические выключатели и устройства, управляемые дифференциальным током (УЗО). Вкупе с защитным заземлением, эти устройства защищают оборудование от КЗ и перегрузок, а человека – от опасности прямого или косвенного прикосновения.

Функциональность

Зная ток КЗ, можно выдать заключение о необходимости установки стабилизатора, или замены кабельной линии на новую. Кроме того, можно сделать вывод о селективности – можно ли её обеспечить хотя бы частично?

Надежность

В случае высокого тока КЗ необходимо применить выключатели с высокой отключающей способностью для надежного функционирования в момент КЗ. Кроме того, должны быть предъявлены высокие требования к качеству монтажа и комплектующих.

Цена

Тут понятно – выполнение предыдущих пунктов значительно влияет на цену всей электросети.

Высокий ток КЗ – это хорошо или плохо?

Как я показал на графике ранее, чем дальше место замыкания от источника питания, тем меньше будет ток короткого замыкания, поскольку сопротивление линии будет больше. Высокий ток КЗ обычно бывает в тех местах электросети, которые расположены наиболее близко к подстанции, а кабельные линии имеют большое сечение проводов. В питающих сетях с напряжением 0,4 кВ относительно высокими считаются токи КЗ более 6кА, а токи КЗ выше 15 кА практически не встречаются. Итак, что мы имеем:

Минусы низкого тока КЗ

  • большое падение напряжения при достаточно мощной нагрузке;
  • как правило, низкое напряжение на электроприборах. При этом стабилизатор поможет не всегда;
  • нестабильность напряжения на электроприборах в зависимости от времени суток или времени года. По нормам на напряжение и его допуски я провёл расследование;
  • высокое (вплоть до бесконечности) время срабатывания автоматических выключателей при КЗ на землю (работает только тепловой расцепитель);
  • необходимость установки автоматических выключателей с характеристикой отключения “В” с целью более вероятного срабатывания электромагнитного расцепителя при КЗ. Этот спорный вопрос обсуждается в моей статье на Дзене Зачем ставить автоматы с характеристикой “В”;
  • обязательная установка УЗО – при этом, кроме своих “основных” обязанностей (отключение питания при высоком токе утечки, а также для защиты человека при прямом и косвенном прикосновении), УЗО выполняет функцию защиты от КЗ на землю (ПУЭ 1.7.59, 7.1.72).

Плюсы низкого тока КЗ

  • можно устанавливать дешевые автоматические выключатели с низкой номинальной наибольшей отключающей способностью (Icn = 4500 А);
  • сравнительно легко можно обеспечить селективность между вводным и нижестоящим автоматами. Но нужен расчет и измерение точного значения тока КЗ,
  • низкий пусковой ток электродвигателей и другой инерционной нагрузки. Статья Что такое пусковой ток, как его измерить и посчитать.

Минусы высокого тока КЗ

  • невозможность обеспечить селективность между вышестоящими и нижестоящими автоматами. Выход – установка рубильника либо селективного по времени автоматического выключателя;
  • необходимость установки АВ с высокой номинальной наибольшей отключающей способностью (Icn = 6000, 10000 А и т.д.). Отключающая способность должна быть выше, чем ток КЗ в начале защищаемого участка (ПУЭ п. 3.1.3);
  • большие негативные последствия при возникновении КЗ.

Плюсы высокого тока КЗ

  • легко гарантировать стабильное напряжение на нагрузке и вообще качество электроэнергии;
  • имеется перспектива подключения новых потребителей и увеличения нагрузки;
  • гарантированное отключение линии при КЗ.

Селективность автоматических выключателей и УЗО – отдельная большая тема, в планах есть.

Резюмируя плюсы и минусы, можно сказать, что значение тока КЗ – палка о двух концах. В бытовом секторе ток КЗ часто бывает низким, и его стараются увеличить, прокладывая новые линии с высоким сечением проводов и устанавливая новые трансформаторные подстанции. В серьезной энергетике наоборот, применяют методы по уменьшению тока КЗ.

Видео

Если есть время, посмотрите Алекса Жука:

Про сопротивление петли “Фаза-нуль”:

А вот реальные короткие замыкания. Слабонервным не смотреть!

Скачать

Эта же статья, красиво свёрстанная и опубликованная в бумажном журнале “Электротехнический рынок”:

• Ток КЗ: размер имеет значение / Статья про ток КЗ, опубликованная в журнале Элек.ру, pdf, 4.45 MB, скачан: 817 раз./

Ток короткого замыкания статья

Респект и уважение, если дочитали досюда и намереваетесь скачать книги по этой теме! Вы серьёзный человек!

• Шабад_М.А._Расчеты_релейной_защиты_и_автоматики / Шабад М.А. Расчеты релейной защиты и автоматики. Хорошая книга 1985 г, в которой рассказывается про устройство электросетей — от оборудования подстанций до селективности защитных автоматов, pdf, 38.87 MB, скачан: 1342 раз./
• Беляев А.В. Выбор аппаратуры, защит и кабелей 0,4 кВ / Беляев А.В. Выбор аппаратуры, защит и кабелей 0,4 кВ — книга для теоретического расчета тока короткого замыкания. СПб 2008, pdf, 17.39 MB, скачан: 1097 раз./
• РД 153-34.0-20.527-98 / Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования РД 153-34.0-20.527-98. Руководящие указания предназначены для использования инженерами-энергетиками при выполнении ими расчетов токов короткого замыкания (КЗ) и проверке электрооборудования (проводников и электрических аппаратов) по режиму КЗ. МЭИ, 1998, pdf, 3.61 MB, скачан: 1009 раз./
• Электрическая часть электростанций и ТП / Электрическая часть электростанций и подстанций. Подробное описание схем и расчетов с примерами. Учебное пособие. Н.В.Коломиец, Томский политех, 2007, pdf, 1.37 MB, скачан: 1003 раз./
• Выбор электрооборудования и расчеты трансформаторных подстанций / Выбор электрооборудования и расчеты трансформаторных подстанций среднего и низкого напряжения. АВВ, учебно-методическое пособие, pdf, 9.16 MB, скачан: 941 раз./
• Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения / Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения: Справочное пособие. В справочном пособии изложены требования ГОСТ Р 50345-99 (МЭК 60898-95) к автоматическим выключателям бытового назначения, предназначенным для защиты от сверхтока, рассмотрена конструкция автоматических выключателей, даны характеристики и приведена их классификация. Разбираются ошибки, которые частично исправлены в новой версии ГОСТ Р 50345-2010, pdf, 7.17 MB, скачан: 1571 раз./

Жду вопросов и замечаний в комментариях!

Рекомендую похожие статьи:

  1. Селективность на модульных автоматах: как достичь невозможного?
  2. От какого тока всё-таки срабатывает УЗО? Разбираемся в терминологии
  3. Температурные режимы. Что будет, если нагреть автоматический выключатель?
  4. Моё мнение по системам заземления
  5. Время-токовые характеристики автоматических выключателей в таблицах
  6. УЗО: Характеристики устройств дифференциальной защиты
  7. Система заземления IT. Как жить без нуля?

Короткое замыкание сети или других источников питания

Под коротким замыканием (КЗ) понимают особый случай, когда соединены 2 проводника электрического тока разных потенциалов или фаз электрического прибора между собой или землей. В месте соединения проводников происходит резкое увеличение значения силы электрического тока с превышением максимально допустимого параметра. Это приводит к остановке нормального функционирование прибора и смежных элементов.

Короткое замыкание 1

По упрощенной формулировке представленный тип замыкания является любым нештатным и незапланированным соединением проводников электричества, имеющих разное значение потенциала. Это могут быть, к примеру, фаза и ноль, что приводит к образованию токов разрушительного действия.

Явление опасно для здоровья человека и его имущества. КЗ вызывает не только сбой оборудования, остановку работы электроприборов. Если пренебрегать правилами безопасности, то это потенциально может обернуться полным выходом из строя аппаратов или их отдельных частей с невозможностью восстановления. Также может возникнуть возгорание, приводящее к пагубным последствиям для жизни людей, их имущества и окружающей среды.

Расчет тока короткого замыкания

Чтобы понимать, почему возникает этот процесс, необходимо провести расчет значений токов короткого замыкания. Для этого надо знать закон Ома: «Значение силы тока в некотором промежутке электрической цепи является прямо пропорциональным значению напряжения и обратно пропорциональным сопротивлению тока на этом промежутке». Это основополагающий закон электрики, который изучается даже в школьной программе. Для большей наглядности, следует обозначить его формулой: I=U/R, где:

  • I — сила тока;
  • U — напряжение на участке цепи;
  • R — сопротивление.

Любое электрооборудование, подключенное к бытовой или промышленной электрической цепи, является активным сопротивлением. Параметр напряжения сети бытового назначения — 220 В (в некоторых случаях 230 В). Представленное значение неизменно. Чем выше значение сопротивления прибора (проводника или некоторого материала), подключенного к электропитанию, тем меньшей будет величина электрического тока.

Для расчёта тока короткого замыкания лучше воспользоваться более «продвинутой» формой закона Ома, называемой законом Ома для полной цепи.

Эта форма закона Ома также изучается в школьной программе, однако мало кто о ней помнит. А ведь именно она применяется для расчёта тока КЗ. Дело в том, что если сопротивление внешних элементов цепи равно 0, то странного деления на ноль не появится, а вместо этого ток будет вполне конкретно и точно вычисляем как результат деления ЭДС источника на внутреннее сопротивление источника напряжения:

Iкз=ε / r

Конечно в случае, если КЗ возникает в доме или квартире — от места замыкания до точки возникновения ЭДС ток проходит через проводку. И неважно, медные это провода или изготовленные из алюминия — они обладают сопротивлением. И в таком случае R не равно нулю. Чему же оно равно — читаем дальше.

Пример 1. Сеть с напряжением 220–230В

Давайте возьмем для конкретного примера: длину проводки 100 м и площадь сечения проводов 2,5 мм² и затем посмотрим каково же будет их сопротивление в случае, если они сделаны из меди.

Формула, также известная из учебника физики любой самой средней школы, гласит:

R=ρ·L/S,

ρ — удельное сопротивление меди, равное приблизительно 0,017–0,018 Ом·мм²/м;

L — длина проводника, выраженная в метрах;

S — площадь проводника, выраженная в мм².

Учтем, что подводящих электроэнергию провода не один, а два (ток приходит по одному проводу и уходит по второму), поэтому длина провода L при расчёте удваивается:

R=0.018·2·100/2,5=1,44 Ом

Итак, теперь видно, что провода имеют достаточно большое сопротивление. Чтобы теперь прикинуть ток КЗ можно воспользоваться законом Ома. Внутреннее сопротивление источника питания нам не известно, но как видно из формулы закона Ома для полной цепи, что чем оно больше, тем меньше будет ток КЗ. Следовательно, приняв r=0 мы найдем максимально возможный ток КЗ при вычисленном R=1,44 Ом.

Также примем, что напряжение питания в сети также максимально возможное, и составляет 230+10%=253 В. В таком случае ток короткого замыкания будет равен:

Iкз=253/1,44 = 175,7 А

Итак, мы провели расчет для конкретного питающего проводника. Для проводки с другими параметрами вычисление может быть произведено аналогичным образом.

Пример 2. Аккумуляторная батарея

Если КЗ возникает непосредственно у источника ЭДС (с таким явлением мы можем встретиться в случае «коротыша» бытового или автомобильного аккумулятора или батареи питания), то в таком случае внешнее сопротивление R≈0. Следовательно, для расчета понадобится знать внутреннее сопротивление r максимально точно (иначе опять возникнет деление на ноль и ничего стоящего мы не насчитаем). Вычислить его не составит труда, если у вас имеется сопротивление (резистор) и мультиметр.

Теперь давайте рассмотрим конкретный пример. Допустим, имеется автомобильный аккумулятор на 12В. Как необходимо действовать, чтобы определить его ток КЗ.

Нам понадобится резистор номиналом 10 Ом на 15Вт, который поможет выполнить необходимый эксперимент:

  1. Измеряем напряжение питания аккумулятора в режиме холостого хода (без нагрузки) мультиметром, допустим мы получили значение 11,85 В.
  2. Далее подключаем в качестве нагрузки резистор 10 Ом 15Вт и замеряем мультиметром ток. Получили 1,07 А.
  3. Не отключая резистор на 100 Ом измеряем падение напряжения на клеммах аккумулятора. Пусть будет 10,8 В.
  4. Теперь можно вычислить внутреннее сопротивление: r=11,85–1,07·10,8=0,3 Ом.
  5. Теперь можно определить ток КЗ: Iкз=11,85/0,3 = 39,5 А

Если вы ещё не догадались что за формулы были применены, то вот подсказки:

r=Uхх–Iн·Uн,

Iкз=Uхх/r,

Uхх — напряжение холостого хода источника питания;

— ток, отдаваемый источником питания под нагрузкой;

— напряжение источника питания под нагрузкой.

Как видно из формул, само значение нагрузки знать не нужно, тем не менее оно подбирается таким образом, чтобы погрешность измерения прибора не давала слишком большой разброс результата (если нагрузка будет незначительно «просаживать» напряжение источника питания, то есть Uхх, то точность результата будет крайне низкой).

Причины возникновения КЗ

Теперь кратко пробежимся по возможным причинам возникновения КЗ.

Короткое замыкание 3

Распространенные причины появления КЗ следующие:

  • устаревшая проводка;
  • механические повреждения внутри цепи;
  • неправильная организация электрических проводов;
  • нарушение правил эксплуатации электроприбора;
  • бесконтрольное увеличение показателя мощности приборов;
  • несоблюдение норм строительства.

Отрицательное воздействие КЗ для человека и его имущества

КЗ, в зависимости от места возникновения, приводит к пагубным последствиям для имущества и безопасности жизни человека. К таковым относят:

Короткое замыкание 4

  • обгорание и выход из строя электрических приборов;
  • воспламенение электрической проводки;
  • снижение напряжения электросети (в промышленных условиях приводит к остановке работы предприятий);
  • падение эффективности работы систем электроснабжения;
  • возникновение электромагнитного воздействия приводит к нарушению функционирования коммуникаций, расположенных под землей.

Виды КЗ

Электричество используется повсеместно и бытовой и промышленной сфере. Чтобы свести риск появления короткого замыкания к минимуму, разработан ряд мероприятий и устройств по обеспечению защиты от КЗ. Однако, чтобы точно понимать в каком случае и какой прибор использовать, нужно знать виды замыкания. Основными из них являются:

  • в цепях постоянного тока;
  • в цепях переменного тока (между: фазой и землей, двумя разными фазами, тремя фазами, двумя разными фазами и землей, тремя фазами и землей).

Доля однофазных КЗ составляет 65% повреждений, 2 фазы с землей — 20%, двухфазных — 10%, трехфазных — 5%. Часто случаются сложные виды повреждений, сопровождающиеся многократной несимметрией. Это означает тип замыкания различных фаз, происходящего в нескольких точках единовременно.

Методы поиска короткого замыкания

Заранее найти место возникновения этого явления довольно сложно. В большинстве случаев до него нет дела ни специалистам, ни обычным пользователям. Однако это поможет вовремя нейтрализовать его, что приведет к невозможности появления пагубных последствий. Благодаря своевременному реагированию, экономятся финансовые средства и время. Методов как определить короткое замыкание существует несколько:

  • визуальный осмотр проводки (на не должно быть разрывов и оголенных проводов);
  • использование мультиметра или мегаомметра;
  • по звуку;
  • исключение.

Короткое замыкание 5

Провода, являющиеся составной частью токоведущего кабеля, могут соприкасаться между собой. Если они оголены, то именно это и является явной причиной КЗ. Подобные повреждения, как правило, находятся в распределительных коробках и других узлах электроснабжения (розетки, выключателях и так далее). Подгорелая изоляция кабеля — явное место, где потенциально может образоваться КЗ.

Применение специальных приборов помогает измерить значение сопротивления цепи. В их составе имеется 2 провода: один из них подключается к фазе, а другой — к нолю (далее к заземлению). Если на дисплее прибора отображается 0, значит целостность проводки в норме, если какое-либо другое значение — контакты соприкасаются. Обратите внимание, что напряжение мультиметра довольно маленькое. Им можно измерять цепи, протяженностью не более 3 метров.

Поиск места возникновения короткого замыкания по звуку — народный метод определения этого явления. Для этого необходимо тщательно прислушиваться у всех соединений. В месте контакта будет слышно характерное потрескивание. Иногда возникает запах горелой пластмассы и изоляции. Пользоваться таким способом нахождения КЗ следует пользоваться только в крайнем случае при недоступности других методов.

Очень часто бывает, что виновником является подключенный электроприбор. Его включение сразу приведет к срабатыванию предохранителя. Это приведет к моментальному отключению электроснабжения участка. Найти такой прибор можно методом исключения, поочередно включая все устройства.

Специалисты настоятельно рекомендуют не применять устаревшие способы поиска КЗ. В большинстве случаев они не показывают должной точности и эффективности. Если возникла необходимость найти место КЗ, необходимо пригласить профессионалов, которые будут использовать качественное и точное оборудование.

Защита от КЗ

Для защиты от КЗ существуют различные устройства:

  • автоматические выключатели;
  • автоматические выключатели с автоматическим возвратом во включенное состояние;
  • УЗО;
  • плавкие предохранители;
  • «пробки»;
  • самовосстанавливающиеся предохранители.

В представленной схеме участвуют стабилитрон и диоды, защищающие светодиоды от воздействия обратных токов. За ограничение тока в системе защиты отвечают 2 резистора. Предохранитель должен быть самовосстанавливающегося типа, номиналы элементов должны подбираться индивидуально в зависимости от условий.

Эффективный способ защиты от представленного явления — применение реактора, ограничивающего ток. Он применяется в системе защиты электрических цепей, где величина КЗ может быть такой силы, с которой обычное оборудование не справится.

Ректор имеет вид катушки с сопротивлением индуктивного типа, подключенной к сети по последовательной схеме. Приемлемое функционирование цепи позволяет соблюдать уровень падения напряжения реактора около 4%. При образовании КЗ основная часть напряжения поступает на это устройство. Такое оборудование бывает масляного и бетонного типов. Каждый из них применяется в зависимости от типа электропроводки и питаемого ею оборудования.

Полезное КЗ

Ток, возникающий по причине подобного явления, может принести не только разрушение, но и пользу. Существует ряд оборудования, функционирующего в условиях повышенного значения тока. Классическим примером таких устройств является электродуговая сварка. Ее работа обусловлена соединением сварочного электрода и контура заземления.

Короткое замыкание 7

При существенных перегрузках функционирование таких аппаратов кратковременно. Его обеспечивает сварочный трансформатор большой мощности. В месте, где происходит соприкосновение 2 электродов происходит выработка тока довольно значительной силы. Это приводит к выделению большого количества тепловой энергии, которой достаточно для плавления металла в области соприкосновения. Таким процессом обеспечена работа сварки. Шов получается аккуратным, долговечным и прочным.

Видео по теме

Ток КЗ. От чего зависит величина тока короткого замыкания?

Ток КЗ

Здравствуйте, уважаемые читатели и гости сайта Power Coup Electric. В сегодняшней статье мы хотим рассказать вам про ток КЗ (короткого замыкания) в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, устройств селективной защиты и т. п.

Далее рассмотрим ток КЗ для трехфазной цепи при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток КЗ во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Ток КЗ

Расчёт тока КЗ

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн — номинальный ток в амперах, Iкз — ток КЗ в амперах, Uкз — напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.

Ток КЗ

Типичные значения напряжений короткого замыкания

Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей пренебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

Ток КЗ

Пример расчёта тока КЗ

На рисунке ниже приведено пояснение для данного примера.

Ток КЗ

Рисунок для расчета тока КЗ

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Расчёт тока короткого трехфазного замыкания

Здесь: U2 — напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт — полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, — имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Ток КЗ

Треугольник сопротивления

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

Расчёт полного сопротивления Zт

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Вычисление Xз

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Расчёт полного эквивалентного сопротивления Zкз

Pкз — мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети — Rа — очень мала, и сравнительно с индуктивным сопротивлением — ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.

Ток КЗ

Характеристики масляных трансформаторов

Ток КЗ

Характеристики сухих трансформаторов

Полное Zтр — сопротивление трансформатора на стороне низкого напряжения:

Расчёт полного сопротивления трансформатора Zтр

Pн — номинальная мощность трансформатора в киловольт-амперах. Активное сопротивление обмоток находится исходя из мощности потерь. Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток КЗ в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток КЗ на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Смотрите также по теме:

Будем рады, если подпишетесь на наш Блог!

  • ТЕГИ
  • Электроэнергетика